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Do within-trial interferences in OFC computations
explain irrational choices?

A neuro-computational approach to value synthesis and comparison.



How do we take decisions?

1 / 13 



How do we take decisions?

Why are we irrational?

1 / 13 



How do we take decisions?

Why are we irrational?

Possible biological constraints :

1 / 13 



How do we take decisions?

Why are we irrational?

Possible biological constraints : - Efficient coding

1 / 13 



How do we take decisions?

Why are we irrational?

Possible biological constraints : - Efficient coding

Louie & Glimcher, 2012. Figure 5.

1 / 13 



How do we take decisions?

Why are we irrational?

Possible biological constraints : - Efficient coding

Louie & Glimcher, 2012. Figure 5.

Louie et al., 2013. Adapted from Figure 1B.

1 / 13 



How do we take decisions?

Why are we irrational?

Possible biological constraints : - Efficient coding

- Neural autocorrelation

Abitbol et al., 2015. Figure 1.

1 / 13 



How do we take decisions?

Why are we irrational?

Possible biological constraints : - Efficient coding

- Neural autocorrelation

- Limited energy budget

1 / 13 



How do we take decisions?

Why are we irrational?

Possible biological constraints : - Efficient coding

- Neural autocorrelation

- Limited energy budget

Orbitofrontal cortex (OFC)

Rudebeck & Rich, 2018. Figure 1.

1 / 13 



How do we take decisions?

Why are we irrational?

Possible biological constraints : - Efficient coding

- Neural autocorrelation

- Limited energy budget

Orbitofrontal cortex (OFC)

Rudebeck & Rich, 2018. Figure 1.

Key region for value-related computations

Padoa-Schioppa & Assad (2006)
Kable & Glimcher (2009)
Hun et al. (2012)
Suzuki et al. (2017)
Juechems & Summerfield (2019)
Pessiglione & Daunizeau (2021)
O’Doherty et al. (2021)
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Rational modelInitial state 
(random)

Three candidate models generate a realistic 
representational geometry.

Both value synthesis and value comparison 
scenarii generate key neural features of the OFC.

What happens when we try to explain
irrational behavior?
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Additional mechanisms capture 
26% of monkey irrational choices.

Models capturing part of the behavior 
generate neural geometries which are 

even closer to the OFC geometry.

Distorting model architecture:

0.79
0.84 0.81

!Rational and irrational 
models also generate other 
OFC neural properties:

- Offer value cells
Chosen value cells
Chosen offer cells

- Neural autocorrelation

- Confidence encoding

Padoa-Schioppa & Assad, 2006. Figure 3.

Abitbol et al., 2015. Figure 1.
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What mechanisms underlie irrational decisions?

Interferences:

How much the output of a model varies 
with the order of information acquisition.

70% 10%

Irrational models develop spill-over 
effects between independant pieces 

of information.

These interferences accumulate 
over time.

Rational models
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Average firing rate (electrophysiological cost):

How much neurons fire on average.

Energy budget

Connections sparsity (structural cost):

How inequal is the distribution of connections 
between neurons.

Low sparsity High sparsity Irrational models rely on less connections.
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Irrational models are more robust to lesions.
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Supplementary

OFC-like neural features

- Offer value / Chosen value / Chosen offer cells
- Confidence encoding
- Autocorrelation
- CCM features

Interferences

- Last attribute integration
- Attended vs. unattended value

Optimality vs. rationality

- Value functions
- Biological constraints

Biological constraints

- Robustness (consistency)

Within-model and within-monkey variability

- E/I balance
- Code efficiency
- Code sparsity
- Electrophysiological cost
- Structural cost
- Robustness (optimality)



Supplementary summary

Padoa-Schioppa & Assad, 2006. Figure 3.

Padoa-Schioppa & Assad, 2006. Figure 4.
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Supplementary summary

Value-relevant 
information

Integration

Encoding

Activity not 
contributing to the 

output readout

Confidence

Projection into the 
output(s)’ null space

Linear decoder

Rational models

Irrational models

Confidence:

Probability that the option about to be chosen (given 
partial information) is the best option.



Autocorrelation:

Influence of pre-stimulus activity onto 
post-stimulus activity.

Abitbol et al., 2015. Figure 1.
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Irrational model, when the 
magnitude has just been 

attended

Irrational model, when the 
probability has just been 

attended
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Optimal value function Value function of monkey F Value function of monkey M

Supplementary summary



Supplementary summary



Supplementary summary



All candidates
Temporal order 

→  Attentional focus
(value synthesis)

Temporal order 
→  Attentional focus
(value comparison)

Temporal order 
→  Temporal order
(value synthesis)

Supplementary summary



Supplementary summary



All candidates
Temporal order 

→  Attentional focus
(value synthesis)

Temporal order 
→  Attentional focus
(value comparison)

Temporal order 
→  Temporal order
(value synthesis)

Supplementary summary



Supplementary summary



All candidates
Temporal order 

→  Attentional focus
(value synthesis)

Temporal order 
→  Attentional focus
(value comparison)

Temporal order 
→  Temporal order
(value synthesis)

Supplementary summary



Supplementary summary



All candidates
Temporal order 

→  Attentional focus
(value synthesis)

Temporal order 
→  Attentional focus
(value comparison)

Temporal order 
→  Temporal order
(value synthesis)

Supplementary summary



Supplementary summary



All candidates
Temporal order 

→  Attentional focus
(value synthesis)

Temporal order 
→  Attentional focus
(value comparison)

Temporal order 
→  Temporal order
(value synthesis)

Supplementary summary



Supplementary summary



All candidates
Temporal order 

→  Attentional focus
(value synthesis)

Temporal order 
→  Attentional focus
(value comparison)

Temporal order 
→  Temporal order
(value synthesis)

Supplementary summary



Supplementary summary


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107
	Slide Number 108
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Slide Number 115
	Slide Number 116
	Slide Number 117
	Slide Number 118
	Slide Number 119
	Slide Number 120
	Slide Number 121
	Slide Number 122
	Slide Number 123
	Slide Number 124
	Slide Number 125
	Slide Number 126
	Slide Number 127
	Slide Number 128
	Slide Number 129
	Slide Number 130
	Slide Number 131
	Slide Number 132
	Slide Number 133
	Slide Number 134
	Slide Number 135
	Slide Number 136
	Slide Number 137
	Slide Number 138
	Slide Number 139
	Slide Number 140
	Slide Number 141
	Slide Number 142
	Slide Number 143
	Slide Number 144
	Slide Number 145

