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How do we take decisions?

Why are we irrational?

Possible biological constraints : - Efficient coding
- Neural autocorrelation

- Limited energy budget

Orbitofrontal cortex (OFC) »  Key region for value-related computations

Padoa-Schioppa & Assad (2006)
Kable & Glimcher (2009)

Hun etal. (2012)

Suzuki et al. (2017)

Juechems & Summerfield (2019)
Pessiglione & Daunizeau (2021)
O’Doherty et al. (2021)

Rudebeck & Rich, 2018. Figure 1.
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- No a priori constraints on the value mapping function
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Training rational models:

Value = Expected reward

70%

—l 64 on average

- Start with random weights
- Train on a dataset of random trials

Repeat 1000 times

Comparison with OFC neural activity:

Huntetal., 2018. Figure 3b.

Subject M AP range Subject F
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Qualitative interpretation: signature
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scenarii generate key neural features of the OFC.

What happens when we try to explain
irrational behavior?




Modelling irrational decisions



Modelling irrational decisions

Distorting model architecture:



7/13
Modelling irrational decisions

Distorting model architecture:

v
ﬁ

Value-relevant
information

Integration
\ 4
Values of both

options

- Start from a rational RNN



7/13
Modelling irrational decisions

Distorting model architecture:

Value-relevant
information
\ 4
\ 4

L 4
A4
a®

Integration
\ 4
Values of both
‘ options

/
\

“»choice = sig(V; — V,)

- Start from a rational RNN

- Generate choices from its output(s)



Modelling irrational decisions

Distorting model architecture:

Value-relevant

information

v

y |
\ 4
Values of both
R options
\

“»choice = sig(V; — V,)

- Start from a rational RNN
- Generate choices from its output(s)

- Freeze all parameters except
recurrent connections

7/13



Modelling irrational decisions

Distorting model architecture:

Value-relevant

information

v

y |
\ 4
Values of both
R options
\

“»choice = sig(V; — V,)

- Start from a rational RNN
- Generate choices from its output(s)

- Freeze all parameters except
recurrent connections

- Fitthe choices of a monkey on a
subset of its trials

7/13



Modelling irrational decisions

Distorting model architecture: 17
>
9009
Value-relevant 5
information § 0.8
- ©
\ 807
c
©
06/

o
(&) ]

! '
. > .
Integration R Rational
\ 4
Values of both
R options
\

“»choice = sig(V; — V,)

- Start from a rational RNN
- Generate choices from its output(s)

- Freeze all parameters except
recurrent connections

- Fitthe choices of a monkey on a
subset of its trials

7/13



7/13
Modelling irrational decisions

Distorting model architecture: 17
>
S o9t
Value-relevant 5
information ‘é 0.8} Additional mechanisms capture
: o 26% of monkey irrational choices.
\ 807
c
o
8067

o
(&) ]

y |
. 3 .
Integration '@ Rational Irrational
\4
Values of both
R options
\

“»choice = sig(V; — V,)

- Start from a rational RNN
- Generate choices from its output(s)

- Freeze all parameters except
recurrent connections

- Fitthe choices of a monkey on a
subset of its trials



7/13
Modelling irrational decisions

Distorting model architecture: 17
>
809
Value-relevant 5
information § 0.8} Additional mechanisms capture
: o 26% of monkey irrational choices.
\ 807
c
o
8067

o
(&) ]

y |
9 'S .
Integration s’ @ Rational Irrational Irrational
; (same) (other)
Values of both
R options
\

“»choice = sig(V; — V,)

- Start from a rational RNN
- Generate choices from its output(s)

- Freeze all parameters except
recurrent connections

- Fitthe choices of a monkey on a
subset of its trials



Modelling irrational decisions

Distorting model architecture:
Value-relevant
information
\ 4

y |
Integration e
\4
Values of both
R options
\

“»choice = sig(V; — V,)

- Start from a rational RNN
- Generate choices from its output(s)

- Freeze all parameters except
recurrent connections

- Fitthe choices of a monkey on a
subset of its trials

o
©

Balanced accuracy
©
\I

o
[

157

Neural distance

o
(o3

o
o

Rational

Rational

7/13

Additional mechanisms capture
26% of monkey irrational choices.

1.5

Neural distance

0.5
0 50 100

% of training

== mm Temporalorder > Attentional focus (value synthesis)
=== Temporalorder > Attentional focus (value comparison)

== == Temporalorder > Temporal order (value synthesis)



Modelling irrational decisions

Distorting model architecture:
Value-relevant
information
\ 4

y |
\ 4
Values of both
R options
\

“»choice = sig(V; — V,)

- Start from a rational RNN
- Generate choices from its output(s)

- Freeze all parameters except
recurrent connections

- Fitthe choices of a monkey on a
subset of its trials

o
©

Balanced accuracy
©
\I

o
[

157

Neural distance

o
(o3

o
o

Rational

*

Irrational
(same)

T

Rational

Irrational

Irrational

(other)

7713

Additional mechanisms capture
26% of monkey irrational choices.

Rational fit Irrational fit

Neural distance

R e

0.5 1 1 ]
0 50 100 50 100

% of training

== mm Temporalorder > Attentional focus (value synthesis)
=== Temporalorder > Attentional focus (value comparison)

== == Temporalorder > Temporal order (value synthesis)



Modelling irrational decisions

Distorting model architecture:
Value-relevant
information
\ 4

y |
\ 4
Values of both
R options
\

“»choice = sig(V; — V,)

- Start from a rational RNN
- Generate choices from its output(s)

- Freeze all parameters except
recurrent connections

- Fitthe choices of a monkey on a
subset of its trials

o
©

Balanced accuracy
©
\I

o
[

Neural distance

o
o

o
o

Rational

Irrational
(same)

Irrational
(other)

Rational

Irrational
(same)

Irrational
(other)

7713

Additional mechanisms capture
26% of monkey irrational choices.

Rational fit Irrational fit

Neural distance

R e

0.5 : '
0 50 100 50 100

% of training

== mm Temporalorder > Attentional focus (value synthesis)
=== Temporalorder > Attentional focus (value comparison)

== == Temporalorder > Temporal order (value synthesis)



Modelling irrational decisions

Distorting model architecture:

Value-relevant
information
\ 4

y |
\ 4
Values of both
R options
\

“»choice = sig(V; — V,)

- Start from a rational RNN
- Generate choices from its output(s)

- Freeze all parameters except
recurrent connections

- Fitthe choices of a monkey on a
subset of its trials

o
©

Balanced accuracy
©
\I

o
[

Neural distance

o
o

o
o

Rational

Irrational
(same)

Irrational
(other)

Rational

Irrational
(same)

Irrational
(other)

7713

Additional mechanisms capture
26% of monkey irrational choices.

Models capturing part of the behavior
generate neural geometries which are
even closer to the OFC geometry.



Modelling irrational decisions

Distorting model architecture:

Value-relevant
information

Values of both
R options
\
“»choice = sig(V; — V,)

- Start from a rational RNN
- Generate choices from its output(s)

- Freeze all parameters except
recurrent connections

- Fit the choices of a monkey on a
subset of its trials

Neural distance

Balanced accuracy

0.9 ’
0.8¢ |
0.7
0.6
0.5 ' :
Rational Irrational Irrational
(same) (other)
157 *
*
e

Additional mechanisms capture
26% of monkey irrational choices.

Our models of irrational decisions
are behaviorally and neurally
realistic.

Rational Irrational Irrational
(same) (other)

Models capturing part of the behavior
generate neural geometries which are
even closer to the OFC geometry.




Modelling irrational decisions

Distorting model architecture:

Value-relevant
information

\ 4

o
©

o
\I

nced accuracy
o
oo

ﬁational and irrational

models also generate other
OFC neural properties:

- Offer value cells
Chosen value cells
Chosen offer cells

-S1 . Neural autocorrelation
-G
e\ Confidence encoding
recu

Padoa-Schioppa & Assad, 2006. Figure 3.

Spikes per second

40
30
20
» L]

i 123 12 11 21 3 3 11, &1, 61
o1 1z 41 o
Offers (#B : #A) Offers (#B : #A)

ole gty
1312 11 2

e

+
141

3142131 241 3
Offers (#B : #A)

~--5c=-= Value (stim B | context 2)

Value (stim A | context 2)

- Value (stim A context 1)

VVVVV i
ctivi Post-stim .
Post-stim
\ Post-stim
presim \\/
tim 4 NS

Abitboletal., 2015. Figure 1. {

- Fit the choices of a monkey on a
subset of its trials

-Rational

Irrational
(same)

Irrational
(other)

Additional mechanisms capture
26% of monkey irrational choices.

Our models of irrational decisions
are behaviorally and neurally
realistic.

Models capturing part of the behavior
generate neural geometries which are
even closer to the OFC geometry.




What mechanisms underlie irrational decisions?



What mechanisms underlie irrational decisions?

Interferences:

How much the output of a model varies
with the order of information acquisition.




8/13
What mechanisms underlie irrational decisions?

Interferences:

How much the output of a model varies
with the order of information acquisition.




8/13
What mechanisms underlie irrational decisions?

Interferences:

How much the output of a model varies
with the order of information acquisition.




8/13
What mechanisms underlie irrational decisions?

Interferences:

How much the output of a model varies
with the order of information acquisition.




8/13
What mechanisms underlie irrational decisions?

Interferences:

How much the output of a model varies
with the order of information acquisition.




8/13
What mechanisms underlie irrational decisions?

Interferences:

How much the output of a model varies
with the order of information acquisition.




8/13
What mechanisms underlie irrational decisions?

Interferences:

How much the output of a model varies
with the order of information acquisition.




8/13
What mechanisms underlie irrational decisions?

Interferences:

How much the output of a model varies
with the order of information acquisition.




8/13
What mechanisms underlie irrational decisions?

Interferences:

How much the output of a model varies
with the order of information acquisition.




8/13
What mechanisms underlie irrational decisions?

Interferences:

How much the output of a model varies - Rational models
with the order of information acquisition.

Irrational models

Interferences

Trial step




8/13
What mechanisms underlie irrational decisions?

Interferences:

How much the output of a model varies - Rational models
with the order of information acquisition.

Irrational models

25
) o Irrational models develop spill-over
? effects between independant pieces
§ 15} of information.
@
£ *
0.5 r r
| i
3

2
Trial step




8/13
What mechanisms underlie irrational decisions?

Interferences:
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Excitatory / inhibitory balance:

Ratio of positive versus negative connections
between neurons.
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Jocham etal., 2012. Adapted from Figure 1.
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Excitatory / inhibitory balance:

Ratio of positive versus negative connections
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Information encoding

Code efficiency:

How much individual units adapt their response
to the statistics of their inputs.

Ideal input-
output function

Output

Stimulus
distribution

Frobability
density

Input
Louie & Glimcher, 2012. Figure 5.
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Energy budget

Average firing rate (electrophysiological cost):

How much neurons fire on average.

Presynaptic ca®™  Transmitter cycling

Spikes (Na'/K*
Spiking costs =»

Axonal/Dendritic

transport

\

Neurons: _ Intracellular \
resting potentials signaling

Vegetative
metabolism

Glia: resting potentials

Lennie 20083.
Adapted from Figure 1B.
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Supplementary

OFC-like neural features

- Offer value / Chosen value / Chosen offer cells Biological constraints
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- Last attribute integration - Code efficiency
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Confidence:
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Autocorrelation:

Influence of pre-stimulus activity onto
post-stimulus activity.
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