

1 Biological profits of irrational computations in the
2 orbitofrontal cortex

3 Juliette Bénon¹ and Jean Daunizeau¹

4 ¹Paris Brain Institute, France

5 **Abstract**

6 Making good decisions is essential for survival and success, yet humans
7 and animals often exhibit perplexing irrational decision-making whose biolog-
8 ical origin remains poorly understood. Recent theoretical work suggests that
9 some forms of irrational decisions may arise from limited coding precision
10 or metabolic budget in individual orbitofrontal neurons. Here, we consider
11 the alternative possibility that systematic errors in decision-relevant compu-
12 tations are the inevitable consequence of the internal connectivity structure
13 within orbitofrontal networks, which was molded under more distal biologi-
14 cal constraints. We first trained cohorts of artificial neural networks to per-
15 form rational decision-relevant computations. Remarkably, they exhibited
16 most electrophysiological coding properties of orbitofrontal neurons recorded
17 in monkeys engaged in a preference-based decision task. We then distorted
18 their internal connectivity to reproduce monkeys' irrational choices. This in-
19 duced systematic interferences in decision-relevant computations that gener-
20 alize across individuals, at both the behavioral and neural level. Importantly,
21 irrational networks also display enhanced behavioral resilience to neural loss
22 when compared to their rational counterparts. This suggests that irrational
23 behavior may be the incidental outcome of distal evolutionary pressure on the
24 tolerance to orbitofrontal circuit's damage.

25 1 Introduction

26 People and animals arguably act, in some circumstances, against their own inter-
27 est. Why does irrational behavior persist, despite its potential costs to survival and
28 fitness? Standard decision theory posits that rational decisions rely on estimating
29 and comparing the expected value of each available alternative option in the choice
30 set. Thus, irrational behavior may emerge from the covert mechanisms through
31 which the brain constructs, maintains or compares option values. Decades of work
32 in human and non-human primates show that these computational processes involve
33 a specific subset of brain systems, including – but not limited to – orbitofrontal
34 (OFC), anterior cingulate (ACC) and dorsolateral prefrontal (dlPFC) cortices [1,
35 2]. While the relative contribution of these subsystems is not well understood, a
36 robust finding across studies is that orbitofrontal neurons encode value, regardless
37 of the type of option, and whether subjects are engaged in explicit decision-making
38 or in the subjective evaluation of single options [3–6]. Accordingly, neuropsycholog-
39 ical studies of brain-damaged patients demonstrate that lesions to the orbitofrontal
40 cortex induce irrational value-based decisions without impairing other types of high-
41 level cognitive processes [7]. This means that the effective rationality of decisions
42 hinges on the integrity of OFC circuits. But even in the absence of clear anatomical
43 lesion, value processing in the OFC is known to exhibit systematic distortions, which
44 can lead to irrational context-dependent behavioral biases. For example, value cod-
45 ing in the OFC is modulated by its pre-stimulus baseline activity [8, 9], adapts to
46 the recent range of option values [10], and depends on whether a given option is
47 the status-quo alternative [11] or is currently attended [12]. Taken together, these
48 results suggest that OFC circuits are organized in such a way that they process
49 value-related information in a moderately, yet consistently, suboptimal manner. In
50 turn, this raises the basic question of why haven't OFC circuits evolved to minimize
51 suboptimal distortions?

52 Our working assumption is that evolutionary pressure eventually selected for

53 OFC computations that are “rational enough”, given the constraints that may
54 act at the neurobiological level. In other words, what looks like irrational com-
55 putations might actually be deemed optimal, once considering the neurobiological
56 constraints under which brain circuits operate. A prominent example is the ener-
57 getic budget of neural circuits, which encompasses both synaptic maintenance and
58 activity-dependent firing costs [13]. These constraints are demonstrably tight: the
59 mitochondrial metabolic supply of neurons is actively restricted at the expense of
60 circuit-level computational efficiency [14], and a scarcity of external resources (e.g.,
61 food) eventually results in impaired neural processing [15]. This supports the idea
62 that the brain has evolved so-called “efficient” neural coding strategies that trade
63 off computational precision for energetic costs [16]. Interestingly, variants of such
64 mechanisms explain value range adaptation effects in the OFC and the irrational
65 behavioral patterns that ensue [17]. But theoretical work also emphasizes other
66 types of tradeoffs that arise from demands on the robustness or fault-tolerance of
67 neural circuits. A widely debated notion is that neural circuits must maintain their
68 excitatory-inhibitory balance to ensure stability and/or homeostasis [18]. Disruption
69 of the E/I balance has even been proposed as a core pathophysiological mechanism
70 in several neuropsychiatric conditions [19]. Another possibility, which is pervasive
71 in biological systems, is the need to minimize vulnerability to localized damage [20,
72 21]. Although direct empirical evidence for such a constraint on neural circuits is
73 comparatively sparser, recent work indicates that neural circuits that subtend, e.g.
74 motor behavior and working memory, achieve resilience to neural loss through archi-
75 tectural redundancy [22–24]. This is important because redundant neural networks
76 are notoriously energy-inefficient [25–27]. In other words, OFC circuits may have
77 evolved under competing architectural constraints. But then: how do we identify
78 which neurobiological constraints might have steered OFC computations away from
79 rationality?

80 We start with the premise that any constraint of the sort discussed above will

81 ultimately shape the architecture of OFC networks in ways that distort value com-
82 putations and compromise decision rationality. This is, in fact, trivially observed
83 in artificial neural network models of the OFC trained to perform candidate value
84 computations while complying with these constraints (see Supplementary Material).
85 Critically however, the form of irrational behavior that emerges depends on both the
86 nature of the constraint and the specific value computations the OFC is assumed
87 to perform. This is because a given type of value computation requires a tailored
88 neural network architecture, whose native compliance with the above constraints is
89 largely arbitrary. We thus reasoned as follows. If we knew what the OFC would
90 look like if it had evolved in the absence of constraints, then we could compare
91 its -counterfactual- architecture to that of actual OFC networks. We argue that
92 artificial neural networks are valuable tools here, as their connectivity structure de-
93 termines both the computations they perform and the activity patterns they exhibit
94 in response to inputs or cues. Thus, a legitimate artificial neural network model of
95 the OFC should exhibit activity patterns that increasingly resemble those of OFC
96 neurons as it learns to perform the value computations that are characteristic of the
97 OFC.

98 In this work, we consider the paradigmatic case of binary decisions under risk –
99 that is, where the choice set consists of two alternatives, each defined by the proba-
100 bility and magnitude of prospective rewards. Numerous empirical recordings of OFC
101 neurons are available during tasks in which macaque monkeys make such decisions.
102 Here, we reanalyze an existing dataset in which decision cues – i.e. option-specific
103 reward magnitude or probability – are revealed one at a time, while randomizing
104 their sequence order across trials. This design provides a unique empirical esti-
105 mate of the dynamics of information content in the OFC as value computations
106 unfold over within-decision time [1]. In line with previous literature, we distinguish
107 between two broad types of value computations: value *synthesis* and value *com-
108 parison*. The former implies that the OFC progressively integrates decision cues to

109 compute the value of both options, which can be concurrently read out on possibly
110 orthogonal subspaces of OFC neural ensembles [5, 28–30]. The latter reduces to
111 directly updating the value difference between the two options as a new decision
112 cue becomes available [1, 31, 32]. Both value synthesis and value comparison can
113 be implemented using one of five distinct neural encoding formats, which vary ac-
114 cording to how the identity of the attended option is represented (e.g., left/right
115 versus default/alternative), and how option values are framed (e.g., left/right, de-
116 fault/alternative, or attended/non-attended) [11, 33]. Together, this yields a total
117 of ten candidate scenarios regarding OFC value computations.

118 We first train recursive neural networks or RNNs to perform each candidate value
119 computation in a rational manner, given arbitrary decision cue sequences. We note
120 that this is not a trivial task, as it requires the network to maintain a memory trace
121 of previously attended cues, while remaining invariant to the order in which cues
122 are presented. It turns out that RNNs can reliably learn to solve this class of prob-
123 lems from virtually any random initialization of their connectivity. At this point,
124 we identify which, among these ten candidate types of value computations, yield
125 legitimate RNN models of the OFC. To do so, we compare the full set of recorded
126 OFC neural responses with the activity patterns of simulated RNNs exposed to the
127 same decision trials as those experienced by the monkeys, at various stages of RNN
128 training. As we will see, this eventually selects two specific types of value compu-
129 tations, which effectively are counterfactual models of OFC networks that would
130 have evolved without any neurobiological constraint. We then distort the internal
131 connectivity of these networks to reproduce monkeys’ irrational choices in the task
132 (about 20% of all choices). As we will show, these distorted RNNs make behavioral
133 and neural predictions that generalize across monkeys. Finally, we compare ratio-
134 nal and irrational RNN models of the OFC, in terms of their energetic budget, the
135 sparsity of their connectivity structure, their E/I balance, and their robustness to
136 neural loss. This enables us to identify which neurobiological constraint may have

137 shaped OFC computations.

138 2 Results

139 2.1 Identification of legitimate RNN models of OFC circuits

140 We took advantage of an open dataset of single unit activity recordings from
141 the OFC, the dlPFC and the ACC of two macaque monkeys ($n = 189, 135$ and
142 183 neurons respectively) engaged in value-based decision-making (22,618 trials in
143 total) [1, 34]. At each trial, monkeys chose between two options presented on the left
144 and right sides of a screen, each defined by the probability and prospective amount
145 of a rewarding juice (see Methods, Fig. 1a). Each decision cue (representing either
146 the probability or the magnitude of the – currently attended – option) appeared
147 sequentially and then disappeared. The monkeys could commit to a decision at any
148 point after the second cue without necessarily sampling the remaining cues and were
149 free to decide which cue to sample if they decided to continue the trial.

150 As we will see, monkeys make decisions that integrate both currently attended
151 and remembered cues. In line with recent empirical work, we hypothesized that
152 the OFC may implement one of two candidate decision-relevant computations: (1)
153 computing the value of both options independently [29, 35] (“value synthesis”) or
154 (2) computing the difference between option values [5, 36] (“value comparison”).
155 Both value synthesis and comparison can be implemented using recurrent artificial
156 neural networks (RNNs), which operate under the same conditions as monkeys in
157 the task. In particular, RNNs access cues sequentially and in an encoding format
158 that specifies attribute type and rank, as well as option identity (see below). At
159 each cue onset, these inputs are sent to a first hidden layer (cue-encoding), whose
160 units feed their output forward to a second hidden layer (cue-integration), from
161 which the RNN’s outputs are linearly decoded (see Fig. 1b and Methods). The
162 integration layer relies on internal recurrent connections to combine currently and

163 previously attended cues, and progressively update its ongoing computations [28].
164 Thus, value synthesis and comparison require distinct recurrent connectivity struc-
165 tures. Now, both value synthesis and comparison require specifying how options are
166 identified, which is debated in the existing literature. The OFC may do so based
167 on, e.g., spatial location [37] (left vs. right), temporal order [28] (first vs. second),
168 or attentional focus [33] (attended vs. unattended). In principle, both OFC inputs
169 (decision cues) and outputs (option values) may encode option identity in a differ-
170 ent format, irrespective of whether the OFC operates value synthesis or comparison.
171 We thus systematically tested all possible combinations, which resulted in ten co-
172 horts of RNNs (two types of value computations combined with five input-output
173 format variations; see Methods). Importantly, each cohort gathers a thousand RNN
174 instances that sample the manifold of admissible connectivity structures, following
175 random weight initializations and training datasets. Note that we did not endow
176 RNNs with the capacity to decide which cue to attend to or when to commit to a
177 decision; rather, we trained them to operate value synthesis or comparison indepen-
178 dently of such processes, which are treated as arbitrary.

179 To begin with, we aimed to identify legitimate counterfactual, idealized RNN
180 models of the OFC. To this end, we adopt a normative approach that obviates the
181 need for empirical data in training RNNs. Cohorts of candidate RNNs were initial-
182 ized with randomly distributed weights and subsequently trained to compute the
183 expected value of options, as defined by rational decision theory – that is, the prod-
184 uct of reward magnitude and probability. When tested on actual monkey decisions
185 at the time of choice, these rational models predicted 79% of choices (monkey F:
186 78%, monkey M: 80%). In fact, the subjective value profiles estimated from monkey
187 choices (see Methods) closely resemble that of expected value (see Fig. 3a and Fig.
188 S1). Thus, rational RNNs provide a reasonable first approximation to monkeys'
189 behavior.

190 Crucially, although all rational RNNs yield identical decisions in the task, their

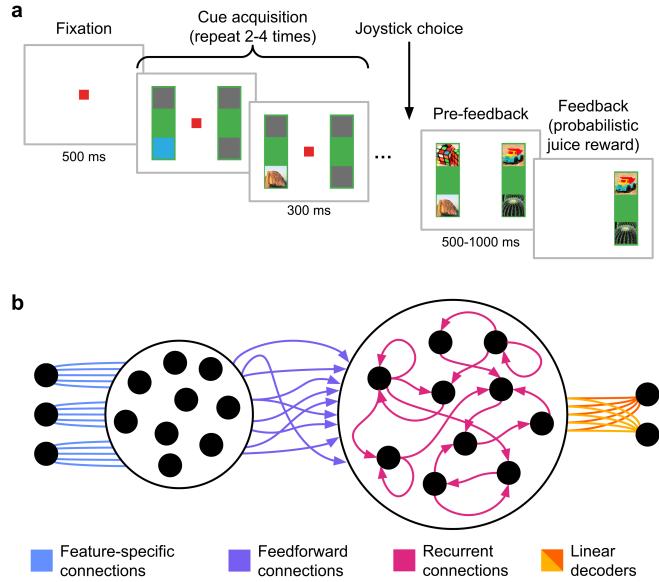


Figure 1: Designing RNNs to solve a decision task. **a**, Task design. Adapted from Hunt et al., (2018) [1]. Monkeys chose between the left and right option based on sequentially sampled informative cues representing either reward probability or magnitude. The locations of the first two cues were fixed, while subsequent cues could be freely chosen. First, a blue light indicated the location of the next available cue, which was revealed once the monkey fixated on the blue area and disappeared afterwards. The monkey could choose an option using a joystick at any point after the second cue. **b**, RNN architecture (see Methods). At each cue onset, the RNN inputs encode the currently attended cue, while the outputs are the RNN’s current estimate of option values or value difference. Applying a softmax mapping to the RNN outputs yields choice probability, where options are identified with regard to spatial location, attentional focus or default status.

internal representations are different. For example, it is almost impossible to decode option values framed in a given option identity format from response patterns of RNNs that were trained under different option identity formats (see Fig. 2c). Also, individual option values are less reliably decoded from the activity of value comparison RNNs than from value synthesis RNNs (paired t-test between value synthesis and value comparison models: $p < 10^{-15}$ for all input-output format variations). We thus asked whether any of these RNN cohorts also capture key aspects of OFC neural informational geometry, despite not having been exposed to neural recordings during training. To test this, we replicated the two types of analysis conducted by Hunt et al. (2018) on single units’ recordings, which we also performed on the RNNs’ integration layer. We first ran a representational similarity analysis at first

202 cue onset, building representational dissimilarity matrices (RDMs) by correlating
203 population activity vectors in response to all ($2 \times 2 \times 5 = 20$) possible cues (see
204 Methods, Fig. S2 and Fig. S9). In brief, RDMs identify which cue features elicit
205 discriminable response patterns across neurons when only a single cue is available.
206 However, generalizing this approach to later stages of the trial becomes challenging,
207 as RDMs face a combinatorial explosion when multiple cues have been sampled. To
208 track neural representation geometry at all stages of decision trials, we also quanti-
209 fied whether and how inter-neuron differences in their sensitivity to current and past
210 cues are preserved across cue onset times (cf. cross-correlation matrices or CCMs –
211 see Methods). One can think of RDMs and CCMs as two distinct summary statis-
212 tics of the informational geometry of distributed neural systems. We then derived
213 the two ensuing neural distance metrics by comparing OFC neurons and RNN units
214 at each stage of the training process (see Methods). Note that even untrained – i.e.
215 random – RNNs exhibit some degree of neural similarity with the OFC, because they
216 respond to value-relevant input cues. Untrained RNNs thus effectively provide the
217 distribution of neural distances under the null. Now, when being trained to perform
218 a specific value computation, RNNs modify their informational geometry and hence
219 their neural distance to the OFC. We considered that legitimate RNN models of the
220 OFC are those RNN cohorts that significantly decrease both neural distance metrics
221 as a result of training (despite being blind to OFC activity patterns). It turns out
222 that only two variants out of ten cohorts satisfy this selection criterion (see Fig. 2b,
223 Fig. 3b); we only consider these for the remainder of the paper (extended results for
224 all model variants are shown in Fig. S7 to Fig. S15 of the Supplementary Material).

225 In brief, both selected RNN models receive input cues that encode option identity
226 using the temporal format, while computing option values in the attentional format.
227 They differ only in terms of the type of value computation: one RNN cohort per-
228 forms value synthesis (neural CCM distance, paired t-test: $p < 10^{-15}$, neural RDM
229 distance, paired t-test: $p < 10^{-15}$), whereas the other performs value comparison

230 (CCM: $p < 10^{-5}$, RDM: $p < 10^{-15}$). Although we cannot yet arbitrate between
 231 these two scenarios, we have clearly narrowed the set of plausible counterfactual
 232 idealized OFC models.

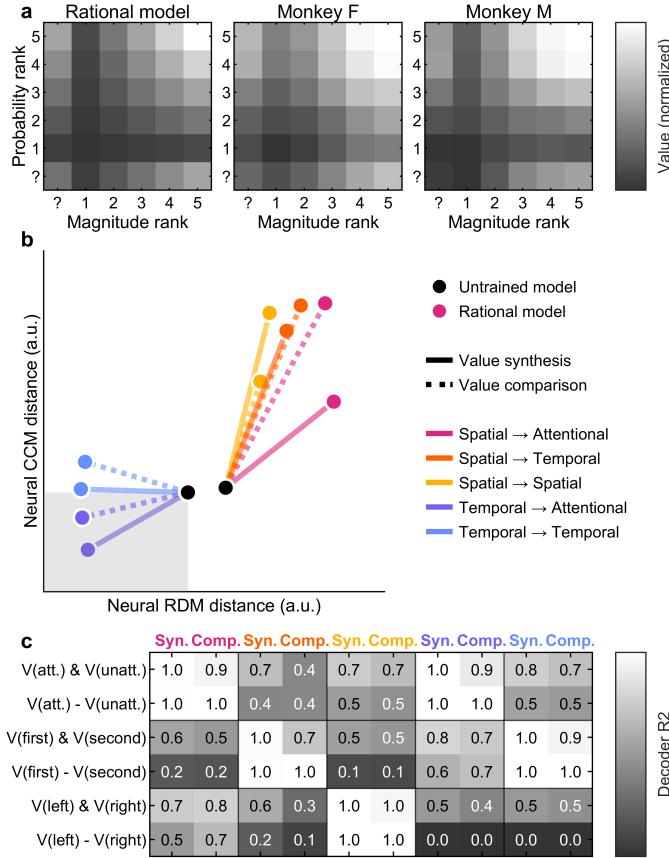


Figure 2: **Selection of candidate counterfactual idealized RNN models of the OFC.** **a**, Average value profiles of rational models and subjective value profiles of each monkey (fitted on choices). **b**, Neural distance trajectories between OFC and RNN cohorts during rational training. Dots show the average distance of RNN cohorts (across the 1000 RNN instances), computed using either RDMs (x-axis) or CCMs (y-axis). Black dots indicate the initial (random) state of RNN cohorts, colored dots denote their final rational state. Only two RNN cohorts significantly improve in both neural distance metrics after rational training (grey area). **c**, Information encoding in rational RNN models. Each column corresponds to a RNN cohort; each row corresponds to a type of decoded information. Numbers and grey nuances indicate the percentage of variance explained by a linear decoder applied to the RNNs' integration layer activity, averaged across the 1000 instances of the corresponding RNN cohort. All combinations are significantly better decoded than chance (paired t-test against the R2 decoded by untrained models: all $p < 10^{-15}$).

233 At this point, we asked whether and how counterfactual idealized OFC models
 234 need to be modified to explain irrational behavior. We thus retrained the selected

235 rational RNNs to predict (a subset of) monkeys' choices, of which about 20% are ir-
236 rational. To preserve the interpretability of their value computations while allowing
237 perturbations during progressive cue integration, RNNs were initialized with their
238 trained rational weights, and retraining was restricted to recurrent connections in
239 the integration layer. At the time of choice, retrained irrational RNNs achieved
240 84% choice prediction accuracy on average (monkey F: 83% (SE 1×10^{-4}), monkey
241 M: 85% (SE 1×10^{-4})) on a test dataset, significantly outperforming rational mod-
242 els (paired t-test: both $p < 10^{-15}$; see Fig. 3a). Moreover, models trained on one
243 monkey significantly outperformed their rational counterparts on the other monkey
244 (paired t-test: both $p < 10^{-15}$; see Fig. 3a). This suggests that irrational RNNs
245 captured hidden deterministic mechanisms underlying irrational behavior that gen-
246 eralize across trials and individuals.

247 We have leveraged the flexibility of RNNs to model both rational decision-making
248 and systematic irrational choices, each relying on a similar structure of intercon-
249 nected units. Next, we sought to determine whether irrational RNNs qualify as
250 realistic models of OFC computations (despite not having been exposed to neural
251 recordings during training). Remarkably, when retraining RNNs to fit the (partly)
252 irrational behavior of monkeys, their neural distance to the OFC decreases even fur-
253 ther compared to their rational counterparts (neural CCM distance, paired t-test;
254 value synthesis model: $p = 9 \times 10^{-3}$, value comparison model: $p < 10^{-15}$). Fur-
255 thermore, this improvement generalizes across monkeys, as shown when evaluating
256 the neural distance of irrational RNNs to the other monkey (neural CCM distance,
257 paired t-test: both $p < 10^{-15}$; see Fig. 3c). However, one may argue that informing
258 RNN models about monkeys' actual choices may have facilitated the resemblance to
259 any brain system that contributes to behavioral control in the task, thus challenging
260 the anatomical specificity of our results. To address this point, we also computed
261 the neural distance of irrational RNNs to dlPFC and ACC neurons. We first checked
262 that empirical summary statistics of neural information geometry vary more across

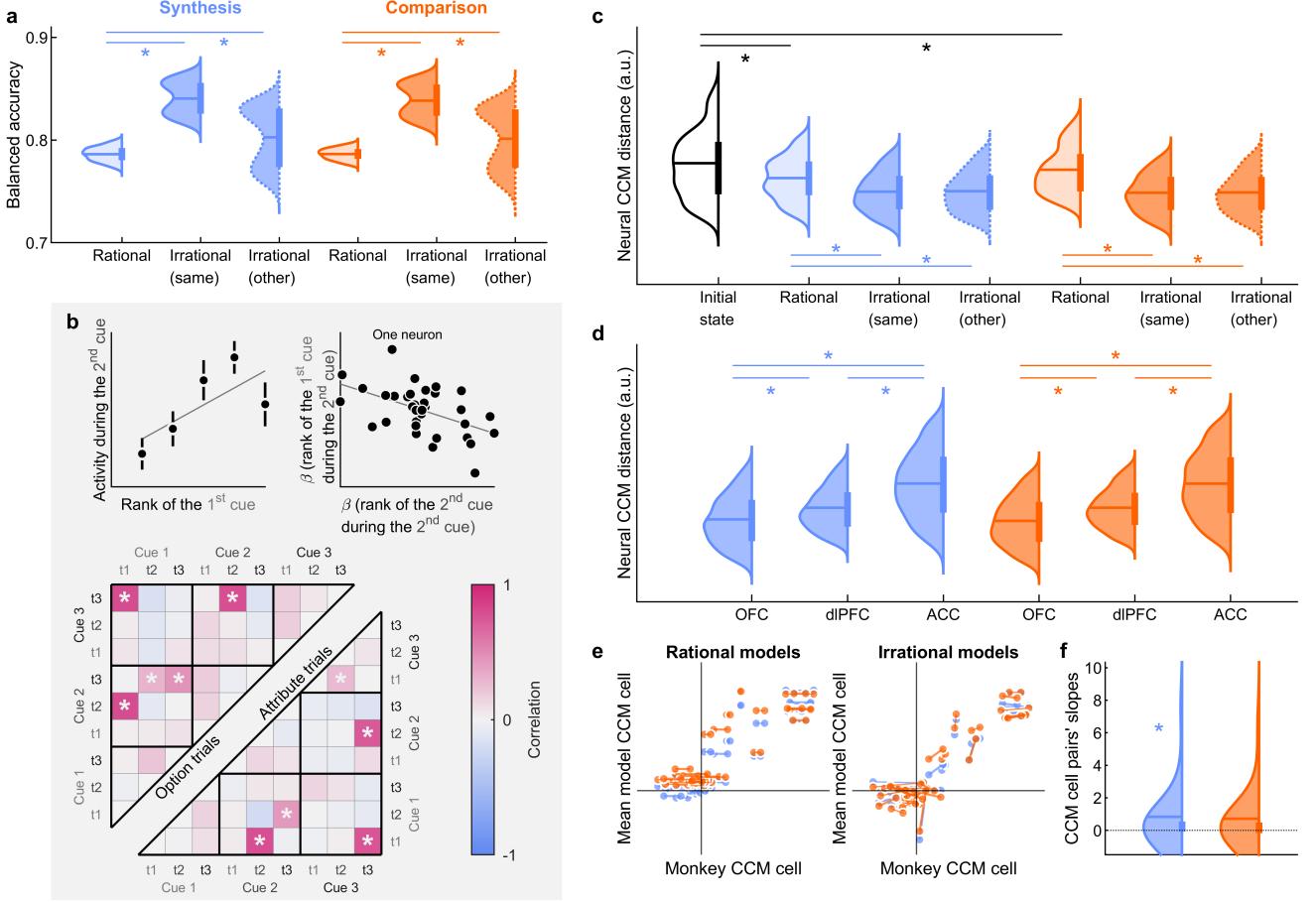


Figure 3: Behavioral and neural realism of candidate RNN models of the OFC. **a**, Balanced accuracy for predicting monkey choices. Each color corresponds to one of the two candidate models (blue: value synthesis, orange: value comparison). Lighter distributions correspond to rational models, darker distributions to irrational models, and distributions with a dashed outline represent irrational models trained on one monkey and tested on the other. Within each violin plot, the horizontal line denotes the mean, and the thicker vertical line represents the interquartile range (25th – 75th percentile). Asterisks indicate significant differences, with p-value < 0.025. **b**, Construction scheme of a CCM, applied to either OFC electrophysiological recordings or RNN activity patterns. Top left: for each OFC neuron (resp. RNN unit), mean firing rate response (resp. activity) at each cue onset is concurrently regressed across trials against the rank of all previously attended cues. Top right: correlation, across neurons (resp. units), between the ensuing regression coefficients for different cues – and possibly obtained at different onset times. Bottom: CCM: each cell in the matrix shows the correlation across neurons (resp. units) for a given pair of regression coefficients. The upper half of the matrix shows the results computed on “option trials” (where the two first cues characterize the same option), while the lower half corresponds to “attribute trials” (where the two first cues characterize the same attribute, but different options). Asterisks indicate significant correlations, with p-value < 0.001 (correction for multiple comparisons across CCM cells). **c**, Neural CCM distance between models and the OFC, same format as panel a. The white distribution corresponds to random RNN initializations (identical for both RNN cohorts). Asterisks indicate significant differences, with p-value < 0.0167. **d**, Neural CCM distance between irrational models and the OFC, the dlPFC and the ACC. Asterisks indicate significant differences, with p-value < 0.0167. **e**, Comparison of predicted (RNNs) and measured (OFC) CCM cells. Each color corresponds to one of the two candidate models (blue: value synthesis, orange: value comparison). Each pair of dots corresponds to a single CCM cell, for each monkey separately. Left: rational RNNs, Right: retrained (irrational) RNNs. **f**, Distribution of the slopes of CCM cell pairs in irrational RNNs (see panel e). Asterisks indicate significantly positive distribution, with p-value < 0.05.

263 brain regions than across monkeys ($p < 10^{-15}$; see Fig. S4). When comparing neu-
264 ral distances across brain regions, we found that irrational RNNs were significantly
265 closer to the OFC than to the dlPFC and the ACC (neural CCM distance, paired
266 t-test: $p < 10^{-15}$ for all comparisons between areas; see Fig. 3d).

267 One may also ask whether selected RNNs exhibit stereotypical trial-by-trial ac-
268 tivity variations that are commonly observed in the OFC. First, we focused on
269 the mixed selectivity of OFC neurons and attempted to classify units according to
270 three distinct response profiles (see Methods): “option value cells”, which encode
271 the value of a single option (either attended or unattended); “chosen option cells”,
272 which encode the binary identity of the chosen option; and “chosen value cells”,
273 which encode the value of the chosen option (see Fig. 4a). In line with the existing
274 literature [32, 38], we found that the trial-by-trial firing rate variations of recorded
275 OFC neurons can be matched to one of the three response profile types at the time
276 of choice (see Fig. 4a). Importantly, this is also the case for integration units of
277 selected RNNs, albeit with a slight over-representation of offer value units. We
278 also analyzed trial-by-trial variations in the grand mean activity – i.e. the average
279 response across OFC neurons or across RNN integration units –, with the aim of
280 verifying common fMRI findings in human OFC. In particular, we asked whether
281 grand mean activity correlates, across trials, with either the value difference between
282 the chosen and unchosen options (based on the monkey’s choice on each trial; see
283 Methods) or choice confidence (defined as the probability, at the time of choice, that
284 processing the remaining unattended cues would not alter the value comparison).
285 Consistent with previous fMRI work [3, 39], we found that the grand mean firing
286 rate of OFC neurons significantly correlates with chosen/unchosen value difference
287 for both monkeys (monkey F: $p = 0.048$, monkey M: $p < 10^{-10}$; see Fig. 4b) and
288 confidence for monkey M (monkey F: $p = 0.1$, monkey M: $p < 10^{-7}$; see Fig. 4c).
289 Interestingly, this correlation was also significantly positive, on average, in both
290 cohorts of models, both for chosen/unchosen value difference (one-sample t-test, ra-

291 tional models: $p < 10^{-6}$, $p < 10^{-15}$; irrational models: $p = 5 \times 10^{-1}$, $p < 10^{-15}$; see
 292 Fig. 4b) and confidence (one-sample t-test, rational models: $p < 10^{-15}$, $p < 10^{-15}$;
 293 irrational models: $p = 1 \times 10^{-3}$, $p < 10^{-15}$; see Fig. 4c and Fig. S14).

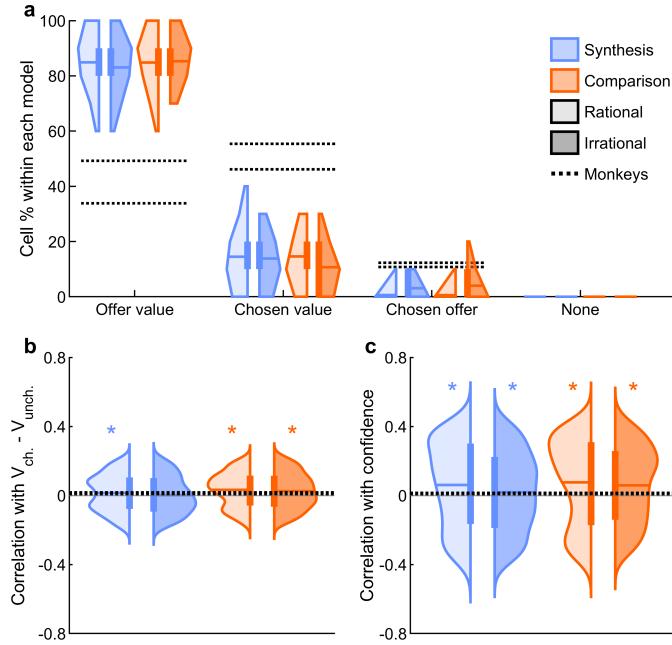


Figure 4: **Comparison of trial-by-trial activity variations between RNNs and OFC neurons.** **a**, Proportion of units classified as offer value, chosen value, or chosen option cells, in RNNs models and in recorded OFC neurons (at the time of choice). **b**, Correlation between the RNNs' grand mean activity and chosen/unchosen value difference. Asterisks indicate a significantly positive correlation, with p -value < 0.05 . **c**, Correlation between the RNNs' grand mean activity and decision confidence. Asterisks indicate a significantly positive distribution, with p -value < 0.05 .

294 Together, these findings suggest that the selected RNNs perform value computa-
 295 tions that are – behaviorally and neurally – realistic. We next seek to characterize
 296 the systematic distortions in cue processing that lead to irrational choice behavior.

297 **2.2 Analysis of computational interferences in irrational
 298 RNNs**

299 First, we quantified potential interference effects across decision cues. Recall
 300 that, by assumption, rational choices should be solely driven by the informational
 301 content of decision cues and thus remain invariant w.r.t. cue presentation order.

302 In contrast, irrational interference effects would manifest as variability in RNNs'
303 value outputs across random permutations of cue presentation order, all else being
304 equal. We thus performed Monte-Carlo simulations of selected RNNs, quantifying
305 the standard deviation of value outputs across randomized cue presentation orders,
306 for all possible cue combinations and at each cue onset time (see Methods). By con-
307 struction, rational RNN models exhibit almost no variability. However, irrational
308 RNNs exhibit significantly stronger interference effects than their rational counter-
309 parts (paired t-test at each time step: both $p < 10^{-15}$). Importantly, interference
310 effects increase as within-trial decision time unfolds (paired t-test within each co-
311 hort between step 2 and step 4: both $p < 10^{-15}$; see Fig. 5a and Fig. 5b). This
312 suggests that systematic perturbations in sequential cue processing may accumulate
313 over time. Accordingly, monkeys' choices become more irrational – i.e. less con-
314 sistent with their average preferences – as decision time unfolds (two-sample t-test
315 across sessions at step 2 vs. step 4, monkey F: $p < 10^{-15}$; monkey M: $p = 0.4$; at
316 step 3 vs. step 4, monkey F: $p = 6 \times 10^{-3}$; monkey M: $p < 10^{-10}$ see Fig. 5c). One
317 may argue that this interference effect may only be apparent, because choices that
318 are triggered later in time may correspond to difficult decisions. Indeed, the average
319 absolute difference between subjective option values – a proxy for decision ease –
320 also tends to decrease when decision time increases (two-sample t-test across trials
321 at step 2 vs. step 4, monkey F: $p < 10^{-15}$; monkey M: $p < 10^{-14}$; see Fig. 5d).
322 To control for the effect of decision difficulty, we regressed irrational choice rates
323 onto the absolute value difference, across trials. Reassuringly, the residuals of this
324 regression still increase as decision time unfolds (two-sample t-test across trials, step
325 2 vs. step 4, monkey F: $p < 10^{-9}$; monkey M: $p = 0.03$; see Fig. S5). This means
326 that monkeys' rationality deteriorates beyond what can be expected from decision
327 difficulty. A possibility is that cue traces within the RNNs' integration layer may
328 leak into one another, either across options or across attributes. To investigate this,
329 we separated "option trials" – where the second cue reveals the missing attribute of

330 the same option as the first cue – from “attribute trials” – where the second cue re-
331 veals the same attribute as the first cue, but for the other option. At the second cue
332 onset, interference effects are significantly stronger in option trials than in attribute
333 trials, for both RNN types (paired t-test within each cohort: both $p < 10^{-15}$). This
334 is also the case for one monkey, based on residual irrational choice rates (two-sample
335 t-test across trials, monkey F: $p = 0.02$; monkey M: $p = 0.1$; see Fig. S5). This
336 suggests that cue leakage effects are more pronounced within options – i.e. across
337 attributes – than across options. Thus, we expect the integration of previously and
338 currently attended cues to be asymmetrical, above and beyond differences induced
339 by the type of information that they convey – i.e. reward probability vs. magnitude.
340 To test this, we quantified the effective value output of selected RNNs as a function
341 of the rank of both previously and currently attended cues, irrespective of cue types
342 (see Methods). As expected, rational RNNs output values that exhibit no significant
343 asymmetry on average (see Fig. 5e). In contrast, irrational RNNs output values that
344 are mostly influenced by the previously attended cue (see Fig. 5f and Fig. 5f). When
345 quantified in terms of the relative gradient of value w.r.t. the rank of previously and
346 currently attended cues (see Methods), we find that the asymmetry is significantly
347 stronger in irrational RNNs than in rational RNNs (paired t-test within each cohort:
348 both $p < 10^{-15}$; see Fig. 5i and Fig. 5j). This asymmetry is also significantly present
349 in monkeys’ choices (one-sample t-test across sessions: both $p < 10^{-14}$; see Fig. 5h).
350 These results suggest that previously attended cues leave a persisting value trace
351 that partly resists novel value-relevant information.

352 In summary, irrational OFC circuits differ from their rational counterfactual
353 variants in that they exhibit slight but systematic interference effects during value
354 computations, which are due to peculiarities in their internal connectivity structure.
355 We now ask whether these peculiarities may bring some form of biological advantage
356 that may have overcompensated the behavioral irrationality that they induce.

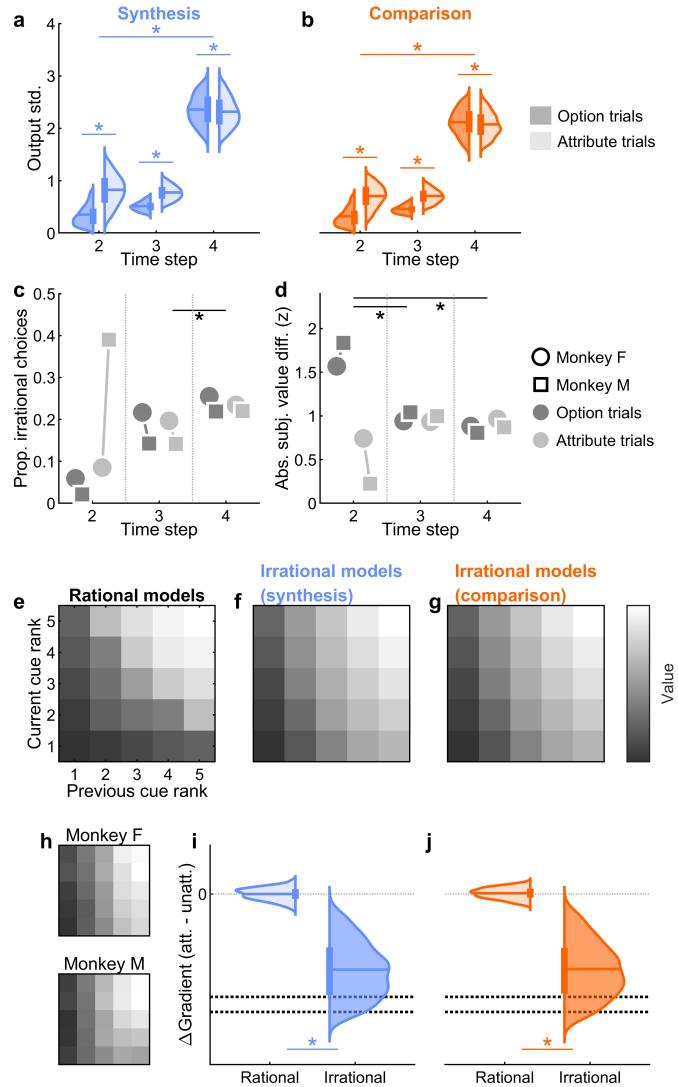


Figure 5: Interference mechanisms in irrational models and monkeys. **a**, Standard deviation of the irrational value synthesis RNNs' outputs in response to random permutations of cue sequence orders (y-axis), as a function of cue onset times (x-axis) during option trials only (light) or attribute trials only (dark). Asterisks between time steps indicate p -value < 0.05 , asterisks within time steps indicate p -value < 0.0167 . **b**, Same format as panel **a**, but for irrational value comparison RNNs. **c**, Rate of monkeys' irrational choices (y-axis), as a function of cue onset time, for both attribute and option trials. Asterisks indicate that the difference between time steps (averaged over trial types) are significant within each monkey, with p -value < 0.0167 . **d**, Absolute subjective value difference, same format as panel **c**. **e**, Average value output of rational RNNs (greyscale nuances), as a function of the rank of both previously (x-axis) and currently (y-axis) cues (see Methods). **f**, **g**, Same format as panel **e**, but for irrational value synthesis and value comparison RNNs, respectively. **h**, Same format as panel **e**, but for both monkeys. **i**, Average difference in the gradient of the RNNs' value output w.r.t. cue rank (attended cue minus unattended cue, see Methods), for both rational and irrational variants of value synthesis RNNs. The asterisk denotes a significant difference between rational and irrational RNNs, with p -value < 0.05 . **j**, Same format as panel **i**, for value comparison RNNs.

357 **2.3 Comparing the biological advantages of rational and ir-**
358 **rational RNNs**

359 First, we compared rational and irrational RNNs in terms of the metabolic cost
360 of sustaining their respective structures. Since action potentials and synaptic main-
361 tenance are major sources of energetic consumption in the brain [40], we quantified
362 two proxies for metabolic cost: average network activity and sparsity of their re-
363 current connections (see Methods). However, we found no systematic significant
364 difference in either measure of metabolic cost between rational and irrational RNNs
365 (paired t-test, average network activity, value synthesis: $p = 0.04$; value comparison:
366 $p = 0.3$; connection sparsity, value synthesis: irrational less sparse than rational with
367 $p < 10^{-11}$; value comparison: irrational more sparse than rational with $p < 10^{-15}$;
368 see Fig. 6a and Fig. 6b).

369 Second, we took inspiration from other variants of efficient coding models, which
370 rather suggests that brain circuits self-organize to maximize either information trans-
371 fer rate or code sparsity. We quantify these in terms of the average log-transformed
372 absolute gradient of units' activation function [17, 41] and the average rate of units'
373 co-activation across all possible units pairs [42, 43], respectively (see Methods). We
374 found no significant difference in code sparsity (paired t-test, both $p > 0.4$; see
375 Fig. 6c). Interestingly however, we found that irrational RNNs exhibit significantly
376 lower information transfer rate than their rational counterparts (paired t-test, both
377 $p < 10^{-15}$; see Fig. 6d). This suggests that rational value computations may already
378 be maximally efficient – at least w.r.t. information transfer rate. Retrospectively,
379 this may be considered an inherent virtue of rational information processing, which
380 precludes interference-induced information loss.

381 Third, we reasoned that irrational circuits may benefit from a better excitatory-
382 inhibitory balance, which would ensure stability and/or homeostasis [18]. However,
383 we found no significant difference in the relative proportion of negative and posi-
384 tive connection weights between rational and irrational RNNs (paired t-test, value

385 synthesis: $p = 0.2$; value comparison: $p = 0.02$; see Fig. 6e).

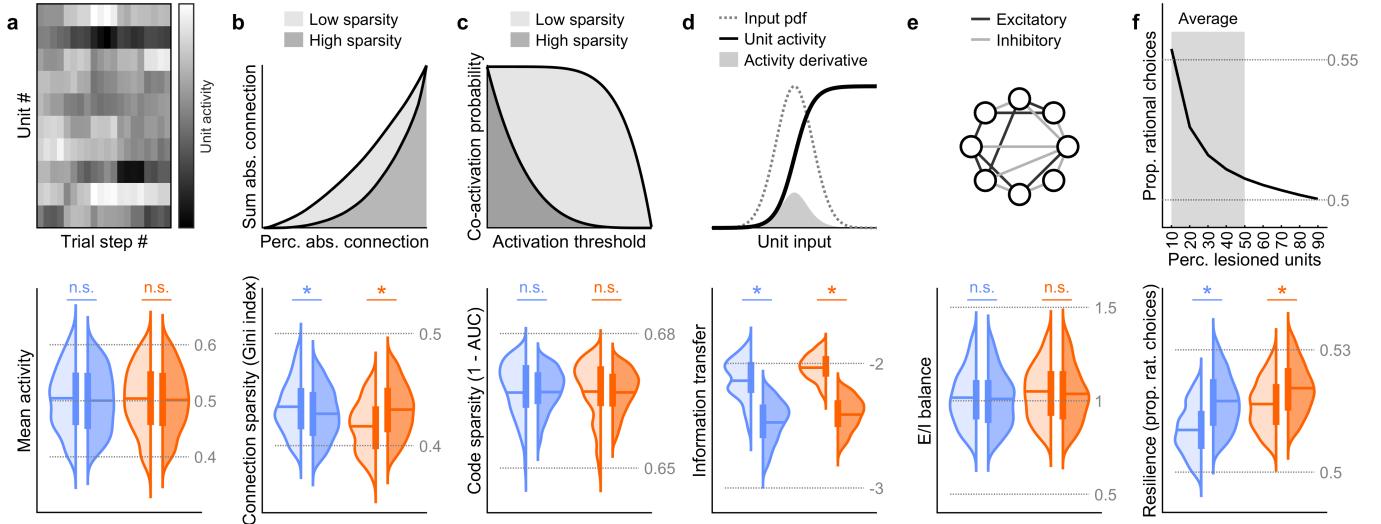


Figure 6: **Potential biological benefits of irrational circuits.** For all panels, asterisks indicate a significant difference between rational and irrational RNNs, with p -value < 0.0083 ($\frac{0.05}{6}$). Blue distributions correspond to value synthesis models, while orange distributions correspond to value comparison models.

a, Metabolic cost, measured as the average network activity, over all trials, trial steps, and units. **b**, Code sparsity, measured as the average co-activation probability over all units pairs. **c**, Information transfer rate, measured as the average log-transformed absolute gradient of units activation function. **d**, Connection sparsity, measured using Gini index. **e**, excitatory-inhibitory balance, measured as the relative proportion of negative and positive connection weights. **f**, Tolerance to neural loss, measured as the average rational choice rate from 10% to 50% of lesioned units.

386 Finally, we reasoned that the internal connectivity structure of irrational circuits
 387 may enable some form of functional redundancy, which would render them more
 388 tolerant to neural loss. To test this, we simulated random virtual lesions of RNN
 389 integration units and measured the retained rate of rational choices. As expected,
 390 rational choice rate monotonically decreases when the fraction of lesioned units
 391 increases, for all types of models. Thus, we quantify neural loss tolerance to neural
 392 loss in terms of the rational choice rate averaged over lesion sizes (from 10% to 50% of
 393 integration units, see Methods). We find that irrational RNNs exhibit significantly
 394 stronger tolerance to neural loss than their rational counterparts, irrespective of
 395 value computations (paired t-test, both $p < 10^{-15}$; see Fig. 6f).

396 **3 Discussion**

397 In this work, we asked whether irrational behavior may not be explained by distal
398 constraints that act on the neurobiology of brain decision-making systems. First, we
399 adopted a normative approach to identify idealized RNN models of the OFC, which
400 proxy the counterfactual, unconstrained evolution of OFC circuits. We found that
401 only a specific subset of candidate RNNs reproduces the informational geometry
402 of the OFC – specifically, those that receive inputs encoding option identity in a
403 temporal format (first vs. second option), while computing option values in an
404 attentional format (attended vs. unattended option). Second, we retrained the
405 selected RNNs to account for monkeys’ irrational choices when making decisions
406 under risk. Importantly, these retrained irrational RNNs eventually make out-of-
407 sample behavioral and neural predictions that generalize across individuals. We also
408 show that their peculiar internal connectivity induce deterministic interferences in
409 value computations that explain the irrational variability of monkeys’ choices across
410 within-trial attentional trajectories. Finally, we compare the potential biological
411 benefits of rational and irrational variants of OFC circuits and show that the latter
412 exhibits much greater tolerance to neural loss. Irrational interferences in value
413 computation may thus be understood as an incidental byproduct of selective pressure
414 favoring the robustness of OFC circuits to anatomical damage.

415 That irrational behavior is the incidental outcome of neurobiological constraints
416 is not a novel idea. In particular, most existing theoretical and empirical work
417 highlight the metabolic cost of information processing in the brain [13]. To our
418 knowledge, this work is the first attempt to demonstrate the importance of resilience
419 to circuit damage in this context. We contend that this demonstration is theoretical
420 in essence, at least when compared to empirical work that employ causal – e.g.,
421 genetic – manipulations to disclose proximal neurobiological constraints [14, 15].
422 Arguably however, it would have been difficult to provide direct empirical evidence
423 for our main claim, at least in primates. This is inherent to the distal nature of the

424 constraint, which is more readily addressed from a computational perspective. In
425 turn, our conclusions rely on a set of modeling assumptions: we will now discuss
426 these.

427 To begin with, we restricted the set of candidate OFC computations to variants
428 of value synthesis and value comparison. Although a few recent empirical studies
429 consider other types of OFC computations [44], this prior selection is representative
430 of current debates regarding OFC’s contributions to decision making [45]. Import-
431 antly, we show that some of these variants reproduce complex features of the OFC’s
432 informational geometry, even without being informed with behavioral and/or neu-
433 ral data (i.e., from first principles). This includes established results regarding the
434 mixed selectivity of OFC neural populations (cf. “option value cells”, “chosen value
435 cells” and “choice cells”) [5, 38]. Moreover, we show that these computational sce-
436 narios are anatomically specific, in that their neural predictions do not resemble
437 electrophysiological recordings in either dlPFC or ACC. Retrospectively, this as-
438 sumption may thus not be so restrictive. Note that the particular RNN variants
439 that we validated using OFC single unit recordings are consistent with landmark
440 fMRI studies of value-based decision making. In particular, our results directly con-
441 firm fMRI studies promoting the attentional format of value coding [33]. But this
442 is not the only possibility. For example, if a default option can be identified prior
443 to decision onset (e.g., in terms of a prior preference over superordinate categories),
444 then pre-stimulus activity in the OFC seems to encode its subjective value, and
445 the strength of this response predicts peoples’ irrational attachment to their default
446 preference [11]. In other words, the OFC may use a value coding format that rather
447 distinguishes default versus alternative options. Interestingly, this also aligns with
448 our neural and behavioral results, under the assumption that early preferences –
449 e.g., based upon the first attended cue – set a default option. The reason is twofold.
450 First, as long as attention remains focused on the first option, attentional and de-
451 fault/alternative value-coding formats are formally indistinguishable. Second, the

452 persisting value trace of the firstly attended cue will, on average, appear as a bias
453 towards the default option. In summary, although the statistical resemblance to the
454 default/alternative hypothesis may be stronger in trials where decisions are triggered
455 prematurely – i.e., before all relevant cues have been processed – we argue that our
456 findings remain compatible with existing representational frameworks of value cod-
457 ing in the OFC. Beyond value-coding format issues, one may find it disappointing
458 that we could not disambiguate computational scenarios of value comparison or value
459 synthesis. The underlying question here is whether the OFC directly implements
460 choice, or whether its role is limited to assigning values to available options [28, 46].
461 When implemented in the form of winner-take-all networks, the former scenario
462 explains reproduced findings in electrophysiological and neuroimaging studies, in
463 particular: the observed mixed selectivity of OFC cells [5, 32], as well as the appar-
464 ent encoding of the value difference between chosen and unchosen options – at least
465 during late phases of decision making [47]. Interestingly, we have shown that such
466 findings can be equally well reproduced by RNNs performing either value synthesis
467 or value comparison. This calls for experiments that are designed to distinguish
468 these kinds of computational scenarios, as opposed to testing one of them.

469 Also, we did not vary the global architecture of our artificial neural nets, which
470 consisted of a layer of feature-encoding units sending their outputs to a layer of
471 recurrently connected integration units. In line with recent neural net approaches
472 to value computations in the OFC [17, 28], we adopted the minimal architecture
473 that ensures universal approximation capabilities while using a limited number of
474 sigmoidal units [48, 49]. Note that a major computational bottleneck of both value
475 synthesis and value comparison scenarios is OFC circuits’ capacity for combining
476 value-relevant attributes of arbitrary number and type [35]. Now, the above two-
477 layer architecture provides a flexible and simple solution to this problem that rests
478 on the second layer’s trained ability to integrate arbitrary sequences of attributes,
479 whose type and rank are encoded in separate pools of the first layer units. In

480 particular, this circumvents the need for otherwise unrealistic, context-dependent
481 changes in connectivity with upstream brain systems involved in recognizing or
482 storing value-relevant information. Nevertheless, the relative simplicity of our de-
483 sign contrasts with previous studies that favored off-the-shelf deep neural nets to
484 approximate the hierarchical organization of, e.g., primates' visual ventral stream
485 [50] or humans' language networks [51]. From a machine learning perspective, tasks
486 such as visual perception and speech comprehension are inherently difficult prob-
487 lems, which remained unsolved until the advent of deep neural networks trained
488 on massive labeled datasets. In these domains, objective task performance reliably
489 predicts statistical similarity with neural data. This relationship, however, does not
490 generalize to our findings: RNNs tend to more closely resemble OFC data when
491 they permit systematic, error-inducing interferences. In retrospect, it is remarkable
492 that our value synthesis/comparison RNNs exhibit such realistic features, at both
493 the behavioral and neural levels. This is despite the degeneracy of RNN wiring
494 profiles w.r.t. each type of value computation, which we systematically explored by
495 repeating the training process across many random initializations of RNN param-
496 eters. Arguably, the ensuing marginalization process renders our results robust to
497 local minima issues. This statistical benefit would have been prohibitively costly to
498 match using deep neural net architectures.

499 One might also argue that rational and irrational RNNs may have been com-
500 pared in an unfair manner. For example, we chose to train rational RNNs under a
501 normative approach, which precludes idiosyncratic variations in risk attitudes. The
502 rationale here was to obtain neural nets that could serve as neutral and fully inter-
503 pretable reference points, in that their computational objective was under our control
504 – i.e. computing expected values, as prescribed by decision theory. We acknowl-
505 edge that, when it comes to measuring statistical similarity to neural recordings,
506 irrational RNNs may somehow benefit from being trained on individual behavioral
507 datasets. However, the fact that irrational RNNs make out-of-sample predictions

508 that generalize across individuals rather suggests that they have captured hidden,
509 yet shared, decision mechanisms. In any case, there is no reason to think that this
510 training difference would, in principle, favor irrational RNNs in terms of resilience
511 to circuit damage. A related concern is whether the latter may be the artefactual
512 byproduct of re-training, which may – in principle – provide an additional opportu-
513 nity for improving efficiency or robustness. This is the reason why we also explored
514 another training strategy for irrational RNNs, which starts from the same randomly
515 initialized parameter sets as rational RNNs. As evidenced in the Results section
516 (see also Fig. S7, Fig. S8 and Fig. S15), our conclusions remain unchanged under
517 this alternative training strategy.

518 In conclusion, we believe our modeling assumptions are tenable, at least when
519 compared to state-of-the-art computational studies in the field. They enabled us to
520 reverse the usual approach to disclosing distal neurobiological constraints on ratio-
521 nality, which typically rests on highlighting conflicts with the demands of behavioral
522 performance (cf. Fig. S6). In contrast, we identify realistic mechanisms that ex-
523 plain observed deviations to rationality, and explore their potential neurobiological
524 advantages. We believe that this may be a fruitful method for investigating related
525 evolutionary or developmental issues in cognitive neuroscience.

526 4 Methods

527 4.1 Task design

528 Monkeys were seated in a behavioral chair with their heads restrained. Each
529 trial began when the monkey fixated on a central fixation cue for 500 ms. At the
530 start of the trial, two options were presented, each consisting of two hidden cues
531 initially masked by grey squares. One of these squares then turned blue, indicating
532 the first cue available for sampling. When the subject fixated on the blue square,
533 the corresponding picture cue was revealed and had to be continuously fixated for

534 300 ms before it was re-masked.

535 All picture cues had been previously learned and were associated with either
536 probability or magnitude information. Probability cues indicated reward probabilities
537 of 10%, 30%, 50%, 70%, or 90%, while magnitude cues represented reward
538 magnitudes of 0.15, 0.35, 0.55, 0.75, or 0.95 arbitrary units (AU).

539 Following the initial cue, a second blue square highlighted the next available cue,
540 which had to be sampled using the same procedure. This second cue was either the
541 other cue of the same option (option trial) or the cue of the other option associated
542 with the same attribute (attribute trial). After the second cue, the two remaining
543 cues were simultaneously highlighted with blue squares, allowing the subject to freely
544 choose which one to sample next, or to select one of the two options using a joystick.
545 If a third cue was sampled, the subject could then either sample the final cue or
546 make a choice. Once the fourth cue was revealed, the subject was required to make
547 a choice.

548 4.2 Neural data

549 The designing of the task, behavioral and neural datacollection were entirely
550 performed by Hunt et al. 2018 [1], and published in an open dataset [34].

551 Neuronal activity was recorded from three brain regions in each monkey: the
552 orbitofrontal cortex (OFC), the anterior cingulate cortex (ACC) and the dorsolateral
553 prefrontal cortex (dlPFC). During each session, neurons were simultaneously
554 recorded from two or all three regions using between 8 and 24 electrodes. Neurons
555 with a firing rate below 1 Hz were excluded. In total, for monkey F, 108 neurons
556 were retained in the OFC, 97 in the ACC, and 107 in the dlPFC. For monkey M,
557 87 neuron were retained in the OFC, 49 in the dlPFC, and 101 in the ACC. These
558 recordings were collected across 24 session for monkey F and 29 sessions for monkey
559 M. Within each subject and brain area, neurons were pooled into pseudopopulations
560 on which all subsequent analyses were performed.

561 To enable direct comparison with RNN models, which operate in discrete time,
562 we averaged each neuron’s firing rate over a 100-400 ms window following cue onset.
563 This provided a single activity measure per neuron per trial time step, consistent
564 with the temporal granularity of activity in the RNNs.

565 4.3 Value profile estimation

566 We estimated the subjective value profile of each monkey (and each model) using
567 standard statistical procedures, based solely on the agent’s choices. More precisely,
568 we fitted the underlying value function, under the assumption that choices followed
569 a simple softmax mapping of the difference in option values:

$$p(\text{choose option 1}) = \frac{1}{1 + \exp(-(V(p_1, m_1) - V(p_2, m_2)))} \quad (1)$$

570 where p_i and m_i denote the reward probability and magnitude of option i , as known
571 by the agent at the time of choice, and $V(p, m)$ is the corresponding subjective
572 value. Equation (1) provides a binomial likelihood function for observed choices,
573 given the unknown monkeys’ value function. Parameterizing the value function
574 then enables us to regress trial-by-trial choices against option attributes. To allow
575 for maximal modelling flexibility, we employed a semi-parametric approach, whereby
576 each possible combination of probability and magnitude – including cases in which
577 one or both attributes were unknown at the time of choice – is captured using a
578 specific model parameter. In other words, the only modelling constraint here is
579 that the same value function applies to all options, but its functional form remains
580 unconstrained.

581 4.4 RNN architecture

582 Let $t \in \{1, 2, 3, 4\}$ denote the time step index at which cue is revealed or attended
583 within a decision trial. The RNN component variables are defined as follows:

- $\vec{x}(t) \in \mathbb{R}^3$: Inputs vector at time t . These include the attribute rank and type – probability or magnitude –, as well as the identity of the currently attended option (see below).
- $\vec{L}_1(t) \in \mathbb{R}^9$: Unit activation vector in the first hidden layer at time t .
- $\vec{L}_2(t) \in \mathbb{R}^{10}$: Unit activation vector in the second hidden layer at time t .
- $\vec{y}(t) \in \mathbb{R}^1$ (for value comparison models) or $\vec{y}(t) \in \mathbb{R}^2$ (for value synthesis models): Output prediction at time t .

At the first time step ($t = 1$), information propagates through the network according to the following equations:

$$\vec{L}_1(t) = f(W_{\text{encode}} \cdot \vec{x}(t) - \vec{b}_1) \quad (2)$$

$$\vec{L}_2(t) = f(W_{\text{forward}} \cdot \vec{L}_1(t) - \vec{b}_2) \quad (3)$$

$$\vec{y}(t) = W_{\text{readout}} \cdot \vec{L}_2(t) \quad (4)$$

At later time steps ($t > 1$), the second hidden layer incorporates recurrent activity elicited by the previous cues. This means that Equation (4) is replaced with:

$$\vec{L}_2(t) = f(W_{\text{forward}} \cdot \vec{L}_1(t) + W_{\text{recurrent}} \cdot \vec{L}_2(t-1) - \vec{b}_2) \quad (5)$$

Here, W_{\blacksquare} refers to matrices of connection weights, and \vec{b}_{\blacksquare} are bias vectors applied to the corresponding hidden layers. The weights W_{encode} and biases \vec{b}_1 were initially set such that each admissible cue rank (x_1) preferentially activated a dedicated unit in a rank-specific pool of first layer units. Similarly, each admissible cue type (x_2) and option identity (x_3) preferentially activated one out of two units each (again in secluded pools of first layer units). To ensure distributed encoding within each pool, the activation profiles of first layer units were configured to tile the domain of their

602 specific input uniformly: whenever one unit’s activity reached 75% of its maximum,
603 the “adjacent” units in the pool were 25% active.

604 To impose a biologically plausible constraint on firing rates, we used a sigmoid
605 activation function f for all units in the hidden layers:

$$f : x \mapsto \frac{1}{1 + \exp(-x)} \quad (6)$$

606 Importantly, when structurally organized into two hidden layers, neural nets with
607 a limited number of sigmoidal units possess universal approximation capabilities [48,
608 49].

609 The RNN received inputs one at a time, in a sequential manner – as monkeys did
610 in the task. The sequence order is determined by the exogenous control of attention,
611 which samples cues in an arbitrary fashion within a decision trial. Let $x_1(t)$, $x_2(t)$
612 and $x_3(t)$ denote the components of the input vector $\vec{x}(t) \in \mathbb{R}^3$:

613 • $x_1(t)$ encodes the normalized rank of the attended cue, with the following
614 mapping:

Magnitude cue	Probability cue	Cue rank	x_1
0.15 AU	10%	1	0.1
0.35 AU	30%	2	0.3
0.55 AU	50%	3	0.5
0.75 AU	70%	4	0.7
0.95 AU	90%	5	0.9

615 • $x_2(t)$ encodes the attribute type. Probability: $x_2 = 0$; magnitude: $x_2 = 1$.
616 • $x_3(t)$ encodes the identity of the attended option. Option 1: $x_3 = 0$; option 2:
617 $x_3 = 1$.

618 Note that the identity of the attended option can be expressed in two different
619 representation formats: spatial (left vs. right) or temporal (first vs. second). This
620 distinction affects the encoding of x_3 , as illustrated in the following example trials:

Trial ID	Attended option side	x_3 in the <i>spatial</i> frame (right = 0, left = 1)	x_3 in the <i>temporal</i> frame (first = 0, second = 1)
622	1	Right	0
	1	Left	1
	1	Left	1
	1	Right	0
	2	Left	1
	2	Left	0
	2	Left	1
	2	Left	0

623 Similarly, the outputs of the network can be expressed in different representation
 624 formats: spatial, temporal, or attentional (attended vs. unattended). The example
 625 trials below illustrate how the encoding format of option values varies across these
 626 frames. Let V_{left} and V_{right} denote the values of the left and right options as estimated
 627 by the network at each cue onset. The statistical similarity between representation
 628 formats depend on the actual sequence order of cue attendance:

Trial ID	Attended option side	Output in the <i>spatial</i> frame	Output in the <i>temporal</i> frame	Output in the <i>attentional</i> frame
629	1	$V_{\text{right}} \& V_{\text{left}}$	$V_{\text{right}} \& V_{\text{left}}$	$V_{\text{right}} \& V_{\text{left}}$
	1	$V_{\text{right}} \& V_{\text{left}}$	$V_{\text{right}} \& V_{\text{left}}$	$V_{\text{left}} \& V_{\text{right}}$
	1	$V_{\text{right}} \& V_{\text{left}}$	$V_{\text{right}} \& V_{\text{left}}$	$V_{\text{left}} \& V_{\text{right}}$
	1	$V_{\text{right}} \& V_{\text{left}}$	$V_{\text{right}} \& V_{\text{left}}$	$V_{\text{right}} \& V_{\text{left}}$
	2	$V_{\text{right}} \& V_{\text{left}}$	$V_{\text{left}} \& V_{\text{right}}$	$V_{\text{left}} \& V_{\text{right}}$
	2	$V_{\text{right}} \& V_{\text{left}}$	$V_{\text{left}} \& V_{\text{right}}$	$V_{\text{left}} \& V_{\text{right}}$
	2	$V_{\text{right}} \& V_{\text{left}}$	$V_{\text{left}} \& V_{\text{right}}$	$V_{\text{right}} \& V_{\text{left}}$
	2	$V_{\text{right}} \& V_{\text{left}}$	$V_{\text{left}} \& V_{\text{right}}$	$V_{\text{right}} \& V_{\text{left}}$

630 Note that not all combinations of input/output formats are trainable. More pre-
 631 cisely, when the input's option identity is encoded using the spatial format, then

632 value outputs can be encoded in all representation formats (3 possibilities). How-
633 ever, when the input’s option identity is encoded using the temporal format, then
634 the spatial information is lost, which leaves only 2 possible value encoding formats
635 (temporal and attention frames). This means that there is only 5 combinations of
636 input/output representation formats in total.

637 4.5 RNN training

638 4.5.1 Rational training

639 Models were implemented and trained using MATLAB R2022b with the VBA
640 toolbox [52]. The RNN parameters subject to training (W_{forward} , $W_{\text{recurrent}}$ and
641 \vec{b}_2) were initialized as samples from an i.i.d. Gaussian distribution with mean 0
642 and variance 0.5. For each RNN model, the training procedure was repeated with a
643 different initial random sample, until 1000 trained models reached 95% test accuracy.
644 In the main text, we refer to the ensemble of trained RNNs as a “cohort”, each of
645 which corresponds to a given type of value computation (value synthesis versus
646 value comparison) and a given combination of input/output representation format
647 (see above).

648 For each model instance in a given RNN cohort, a training set and a testing set
649 consisting of 500 trials each were generated. Every trial consisted of a sequence of
650 four cues, randomly chosen among the set of different option pairings, and presented
651 in a random order. Note that training and testing trials could be classified post-hoc
652 as either “attribute trials” or “option trials”, depending on whether the attention
653 switched to the second option at the second cue onset, or not.

654 Now, so-called “value synthesis” models were trained to output the expected
655 value of both options in response to each cue presentation. In contrast, “value
656 comparison” models were trained to output the difference in expected value between
657 the two options. When both the probability and magnitude of an option were

658 available, its expected value was computed as their product. If any attribute was
659 missing, its rank was replaced by its prior mean under the task distribution.

660 Training was terminated when the absolute change in variational free energy
661 between VBA successive iterations fell below 10. A network was considered success-
662 fully trained if it reached at least 95% of explained variance on its testing set. Each
663 RNN cohort consisted of 1000 independently trained model instances, each with a
664 unique training set, testing set, and parameter initialization. Importantly, random
665 seeds were shared across cohorts, which allowed for fully matched comparisons across
666 cohorts.

667 4.5.2 Irrational training

668 To preserve the interpretability of value computation and input/output repre-
669 sentation formats, all network parameters were frozen except for $W_{\text{recurrent}}$. The
670 network outputs were transformed into choice probabilities via a simple softmax
671 mapping: $p(\text{choose option 1}) = \frac{1}{1+\exp(-\Delta V)}$.

672 In contrast to the rational training phase, where value outputs were evaluated
673 at each cue onset, irrational training evaluated the value outputs only at the time of
674 choice. Since $w_{\text{recurrent}}$ controls the way RNNs assimilate cue sequences to perform
675 their specific value computations, this effectively restricts the admissible sources of
676 irrational behavior to within-trial interferences between cues.

677 Each RNN instance within each cohort was then re-trained to fit the choices of
678 each individual monkey, using a training dataset of 2000 trials randomly selected
679 from monkeys' recorded sessions. This procedure produces two twin versions of
680 each retrained irrational model – one for each monkey. We then test their respective
681 behavioral and neural predictions within and across monkeys. The former evaluates
682 their inter-trial generalization ability, whereas the latter focuses on inter-individual
683 generalization ability.

684 In a supplementary analysis, we also trained networks to predict monkey choices

685 directly from their initial parameterization, without a prior rational training phase.
686 This procedure was thus similar to rational training in terms of training load (cf.
687 optimization of all parameters in VBA and no partial freezing of parameters), except
688 that value outputs were only evaluated at the time of choice.

689 **4.5.3 Rational training with constraints**

690 In another supplementary analysis, we trained RNNs to perform rational value
691 computations while simultaneously satisfying neurobiological constraints. More pre-
692 cisely, RNN parameters were trained to optimize a tradeoff between the accuracy of
693 their value outputs and the compliance to one of the following constraints: minimal
694 average firing rate, maximal connection sparsity (considering both feedforward and
695 recurrent weights), maximal coding efficiency, or maximal resilience to neural loss
696 (see *Biological benefits* below). To balance these two – possibly conflicting – objec-
697 tives, we introduced trade-off weights that varied logarithmically from 10^{-3} to 10^3 ,
698 allowing us to modulate the relative importance of “behavioral efficiency” (accuracy
699 of value outputs) versus “neural efficiency” (compliance to the neural constraint).
700 The results of this training procedure can be eyeballed in Fig. S6.

701 **4.6 Analysis of informational geometry within neural pop-
702 ulations: summary statistics**

703 **4.6.1 Representational similarity analysis**

704 Let $\overrightarrow{L_2^x}(1)$ denote the vector of activations in the RNN’s second layer in response
705 to input \overrightarrow{x} at the first cue onset. This vector can be computed for each possible input
706 $\overrightarrow{x_k}$, which yields 20 distinct activation patterns (i.e., 5 cue ranks \times 2 cue types \times 2
707 options). The representational dissimilarity matrix (*RDM*) is constructed element
708 by element by computing pairwise similarities between these activation vectors [53]:

$$RDM_{k,l} = r \left(\overrightarrow{L_2^{x_k}}(1), \overrightarrow{L_2^{x_l}}(1) \right) \quad (7)$$

709 where r denotes Pearson's correlation. If $RDM_{k,l}$ strongly positive, then activity
 710 patterns are mostly invariant to differences between inputs \vec{x}_k a,d \vec{x}_l , i.e. the neural
 711 representation of these inputs are similar. In brief, RDMs enables us to identify
 712 what input features need to change to elicit distinct neural responses.

713 The same procedure is applied to recordings of OFC neurons (as well as to neural
 714 recordings within the dlPFC and the ACC), using vectors of averaged firing rates
 715 measured between 100 ms and 400 ms following the first cue onset. This yields two
 716 RDMs: one for the model (RDM^{model}) and one for the OFC data (RDM^{OFC}). Full
 717 RDM summary statistics for all monkeys and brain regions can be eyeballed in Fig.
 718 S2, and average RDMs obtained for all RNN cohorts are plotted in Fig. S9.

719 Finally, the similarity between these matrices is quantified using a rank-based
 720 distance metric:

$$\text{dist}_{\text{RDM}} = 1 - \rho \left(RDM_{\text{upper}}^{\text{OFC}}, RDM_{\text{upper}}^{\text{model}} \right) \quad (8)$$

721 Here, ρ denotes Spearman's correlation and RDM_{upper} refers to the upper tri-
 722 angular half of the matrix, excluding the diagonal. We used a rank-based metric
 723 because experimental neural data is typically much noisier than model activations,
 724 resulting in compressed correlation ranges that are more appropriately captured by
 725 rank correlations. The neural RDM distance trajectories between all models and
 726 brain areas can be eyeballed in Fig. S7, and the details of the comparison with OFC
 727 recordings are displayed in Fig. S13.

728 4.6.2 Cross-correlation matrices

729 Unfortunately, the above representational similarity analysis does not scale well
 730 with the number of input combinations. In our context, its statistical cost is pro-

731 hibitive for later phases of decision trials, when more than one cue has been attended.
 732 For example, at the second cue onset, there are 400 possible cue combinations, which
 733 would induce RDMs with almost 79800 entries. This is why we resort to another type
 734 of summary statistics, which was proposed by Hunt et al. (2018) [1]. In brief, this
 735 analysis enables us to quantify and compare the multiple traces that cue sequences
 736 leave on units' activity, at the cost of partly neglecting differences induced by at-
 737 tribute types. This simplifying assumption exploits the observed quasi-symmetrical
 738 impact of reward probability and magnitude on monkeys' subjective value profiles
 739 (see Fig. 2a).

740 Let $L_2^{s(x)}(i, t)$ denote the activation of unit i in the second hidden layer after
 741 the presentation of a cue at time $t \in \{1, 2, 3\}$, given a sequence of inputs $s(x)$ of
 742 length t . We regress each second layer unit's trial-by-trial activity variations at cue
 743 onset t concurrently onto trial-by-trial variations of normalized attribute rank in
 744 all cues, while identifying cues by their appearance order in the sequence. Note
 745 that we also include two additional regressors, which encode how consistent the
 746 2nd and 3rd cues (respectively) are w.r.t. the currently preferred option, as well as
 747 an intercept term. This approach aims at detecting nontrivial memory traces of
 748 previously attended cues, while ruling out mere confirmation effects in value coding
 749 neurons. Importantly, we separate "option trials" (where the first two cues belong to
 750 the same option) from "attribute trials" (where the first two cues describe the same
 751 attribute – i.e. probability or magnitude – but for both options) prior to performing
 752 the regression analyses. This yields one set of regression coefficient estimates per
 753 trial type.

754 Let $\vec{\beta}_k(t) \in \mathbb{R}^{n_{\text{units}}}$ denote the vector of t-statistics associated with regression
 755 coefficient estimates for the k^{th} attended cue ($k \in \{1, 2, 3\}$), given each second layer
 756 unit's activity at time t . This vector measures how sensitive to the k^{th} attended
 757 cue second layer units are (at time t) in normalized signal-to-noise ratio units. This
 758 enables a direct quantitative comparison across units, cue presentation orders and

759 decision times. Note that $\vec{\beta}_k(t)$ vectors that involve cue presentation orders that
760 are strictly higher than activity sampling times (i.e. when $k > t$) are statistically
761 meaningless.

762 We then define the cross-correlation matrix (*CCM*) as follows:

$$CCM_{k,k',t,t'} = \rho(\vec{\beta}_k(t), \vec{\beta}_{k'}(t')) \quad (9)$$

763 where ρ denotes Pearson's correlation. A strongly positive CCM cell indicates that
764 the neurons most sensitive to the k^{th} attended cue at time t are also those most
765 sensitive to the k'^{th} cue at time t' .

766 We obtain full CCMs by systematically varying cue presentation orders (k and
767 k') as well as activity sampling times (t and t'), yielding a 9 by 9 symmetrical matrix.
768 We then remove CCM cells that are meaningless to avoid statistical illusions possibly
769 induced by imperfections in trial randomizations. We repeat this process for both
770 trial types (cf. "option trials" versus "attribute trials"), yielding two CCM types.
771 Differences between the two types of CCM cells that involve the first and second cue
772 onset times (i.e. $CCM_{1,2,\blacksquare,\blacksquare}$) signal that a shift in the attended option affects the
773 network's distributed computations. In particular, if neurons respond to the value
774 difference between options, then one expects $CCM_{1,2,2,2}$ to be positive for option
775 trials, and negative for attribute trials [1].

776 We apply the same analysis on recorded data from OFC neurons (as well as
777 neurons in the dlPFC and ACC). For each neuron, we compute the average firing
778 rate in a 100-400 ms window after each cue onset and regress it against normalized
779 attribute ranks of all cues (including the same additional regressors). This provides
780 summary statistics whose temporal resolution matches that of RNN models. Full
781 CCM summary statistics for all monkeys and brain regions can be eyeballed in Fig.
782 S3, average CCMs obtained for all RNN cohorts are plotted in Fig. S9 and the
783 distribution of key CCM cells are shown in Fig. S10.

784 To compare the informational geometry of RNNs and OFC neural populations,

785 we simply compute the Euclidian distance between the meaningful CCM cells:

$$\text{dist}_{\text{CCM}} = \left\| \begin{bmatrix} \text{vec}(CCM_{\text{option}}^{\text{OFC}}) \\ \text{vec}(CCM_{\text{attribute}}^{\text{OFC}}) \end{bmatrix} - \begin{bmatrix} \text{vec}(CCM_{\text{option}}^{\text{model}}) \\ \text{vec}(CCM_{\text{attribute}}^{\text{model}}) \end{bmatrix} \right\|_2 \quad (10)$$

786 The neural CCM distance trajectories between all models and brain areas can
787 be eyeballed in Fig. S7 and Fig. S8, and the details of the comparison with OFC
788 recordings are displayed in Fig. S13.

789 **4.6.3 Mixed selectivity: offer value cells, chosen value cells and choice
790 cells**

791 To identify offer value, chosen value, and choice cells, we replicated the analysis
792 previously introduced by Padoa-Schioppa and colleagues [38]. When applied to
793 neural recordings in the OFC, we relied on subjective value profiles, as estimated
794 from monkeys' choices in the task (see *Value profile estimation*). To maximize the
795 match between analyses, we also use model-specific value profiles for RNNs.

796 For each unit, we performed four separate regressions across all trials, using
797 four distinct regressors: the value of option 1, the value of option 2, the value of
798 the chosen option, and the identity of the chosen option. Note that we match the
799 option identity encoding format to the one used by each RNN model. Each unit was
800 assigned to the category that yielded the highest percentage of explained variance,
801 provided the regression was significant ($p\text{-value} < 0.05$). Otherwise, no category
802 was assigned. The distribution of cell categories for all models can be eyeballed in
803 Fig. S14.

804 4.7 Analysis of computational interferences in irrational
805 RNNs

806 4.7.1 Dependency on cue sequence order

807 In principle, rational behavior in the task only depends upon the content of
808 value-relevant information, but not on its presentation sequence order. Under this
809 view, any observed dependency on cue sequence order violates rationality.

810 Let $y^{s(x)}(t)$ denote the value difference between options, as can be readout from
811 the RNN's response to an input sequence $s(x)$ of length t – where the sequence $s(x)$
812 is composed of a series of cues presented in a specific order. For value synthesis
813 models, we compute $y^{s(x)}(t)$ by subtracting the readouts of both option values (at
814 time t). To quantify the dependency on cue presentation order, we first measure
815 the standard deviation of $y^{s(x)}(t)$ across all possible permutations of cue orderings
816 while keeping the set of t attended cues constant, and then average the results over
817 cue sets. We repeat this process separately for option trials and attribute trials,
818 meaning that we only consider cue order permutations that are admissible for each
819 trial type.

820 Let X be the set of all possible combinations of t cues, and for each such set
821 $x \in X$, let $S(x)$ denote the set of admissible orderings of those cues (restricted to
822 the relevant trial type). Then, the model's dependency on sequence order at time t ,
823 denoted $d(t)$, is defined as:

$$d(t) = \frac{1}{|X|} \sum_{x \in X} \sqrt{\text{Var}(\{y^{s(x)}(t) | s \in S(x)\})} \quad (11)$$

824 Note that this measure is defined for all decision times starting from the second
825 cue onset ($t \geq 2$) – and both trial types. This enables us to track the possible
826 accumulation of interferences in RNN computations as decision time unfolds.

827 Models' dependency on sequence order is represented in Fig. S12 (top row) for

828 all cohorts.

829 Note that this analysis cannot be directly applied to monkeys' choices, as we
830 cannot have access to the monkeys' internal value estimates for each cue sequence
831 order. This is because the total number of unique cue sequence orders is very large:
832 specifically, 10000 per trial type (corresponding to 5 cue ranks for each of the 4 cues
833 and $4! = 24$ possible cue orderings, restricted to valid ones). This number is compa-
834 rable to the total number of decision trials for each monkey (Monkey F: 9463 trials;
835 Monkey M: 13155 trials), which means that we have no empirical repetitions of cue
836 sequence orders. This is the reason why we resort to measures of apparent deviations
837 to rational choice, which effectively reduce to detecting trials that are incongruent
838 with estimates of monkeys' subjective preferences (see Fig. 5c and Fig. 5d).

839 **4.7.2 Persisting value traces**

840 The above dependency on sequence order may be partly driven by a directional
841 bias, whereby the effective weight of each cue is determined by its onset time. For
842 example, previously attended cues may weigh more on value outputs than currently
843 attended cues, all else being equal. We developed a specific method for detecting
844 such persisting value traces, which can be equally applied to both RNN simulations
845 and monkeys' behavior in the task.

846 We start by re-estimating value profiles, while allowing for value differences be-
847 tween options that are currently or previously attended (at the time of choice), and
848 having separated trials by the type of attended cue (reward probability vs magni-
849 tude). Let $V_{\text{att}}^{\text{prob}}$ denote the pseudo-value function of the attended option when a
850 probability cue is attended at the time of choice, and $V_{\text{unatt}}^{\text{prob}}$ that of the other (unat-
851 tended) option. Let p_{att} and m_{att} be the ranks of the attended option's probability
852 and magnitude, and p_{unatt} and m_{unatt} those of the unattended option. The choice
853 probability for selecting the attended option is given by:

$$p(\text{choose attended option}) = \frac{1}{1 + \exp\left(-\left(V_{\text{att}}^{\text{prob}}(p_{\text{att}}, m_{\text{att}}) - V_{\text{unatt}}^{\text{prob}}(p_{\text{unatt}}, m_{\text{unatt}})\right)\right)} \quad (12)$$

854 This provides a binomial likelihood function for observed choices that are trig-
 855 gered when a probability cue is attended. To estimate the pseudo-value profiles
 856 $V_{\text{att}}^{\text{prob}}$ and $V_{\text{unatt}}^{\text{prob}}$, we use the same semi-parametric approach as before. The pseudo-
 857 value profiles $V_{\text{att}}^{\text{mag}}$ and $V_{\text{unatt}}^{\text{mag}}$ can be estimated similarly, given observed choices that
 858 are triggered when a magnitude cue is attended.

859 Recall that $V_{\text{att}}^{\text{prob}}$ (resp. $V_{\text{att}}^{\text{mag}}$) is the pseudo-value that ensues from currently
 860 attending a probability (resp., a magnitude) cue, while the magnitude (resp., prob-
 861 ability) cue was previously attended (if ever). To quantify the relative impact of
 862 currently and previously attended cues while marginalizing over cue types, we then
 863 combine $V_{\text{att}}^{\text{prob}}$ and $V_{\text{att}}^{\text{mag}}$ to form the following average pseudo-value profile V_{att} :

$$V_{\text{att}} = \frac{1}{2} \left(V_{\text{att}}^{\text{prob}} + V_{\text{att}}^{\text{mag}} \right) \quad (13)$$

864 Importantly, V_{att} is a 6 by 6 pseudo-value profile whose first dimension
 865 (columns) spans the rank of the currently attended cue, while its second dimension
 866 (rows) spans the rank of the previously attended cue – including the case where it is
 867 unknown at the time of choice. A rational agent would exhibit a strictly symmetric
 868 average pseudo-value profile.

869 To quantify potential asymmetries in V_{att} , we computed gradients of V_{att} with
 870 respect to the currently and previously attended (or, equivalently, unattended) di-
 871 mensions. Let $V_{\text{att}}(:, i)$ denote the y^{th} row (i.e., fixed attended attribute, varying
 872 unattended attribute) and $V_{\text{att}}(i, :)$ denote the i^{th} column (i.e., fixed unattended
 873 attribute, varying attended attribute). Average pseudo-value gradients are given
 874 by:

$$\begin{cases} \frac{\partial V_{\text{att}}}{\partial \text{att}} = \frac{1}{5 \times 4} \sum_{i=1}^5 \sum_{j=1}^4 V_{\text{att}}(i, j+1) - V_{\text{att}}(i, j) \\ \frac{\partial V_{\text{att}}}{\partial \text{unatt}} = \frac{1}{5 \times 4} \sum_{i=1}^4 \sum_{j=1}^5 V_{\text{att}}(i+1, j) - V_{\text{att}}(i, j) \end{cases} \quad (14)$$

These gradients capture the average rate of change in the average pseudo-value profile w.r.t. changes in the attended or unattended attribute ranks. For example, a stronger gradient along the unattended dimension signals a greater sensitivity to the previously attended cue. This is the hallmark of a persisting value trace that resists novel (currently attended) information. Results can be eyeballed for all RNN models in Fig. S12.

4.8 Biological benefits

4.8.1 Efficient coding: average network firing rate

The average network firing rate \bar{f} of a model is defined as the average activation of RNNs' second layer units, across all units, time steps, and possible trials:

$$\bar{f} = \frac{1}{N_S \times N_t \times N_i} \sum_{s(x) \in S(X)} \sum_{t=1}^{N_t} \sum_{i=1}^{N_i} L_2^{s(x)}(i, t) \quad (15)$$

where $S(X)$ denotes the set of all admissible sequences of 4 cues, $N_S = 10000$ is the number of such sequences, $N_t = 4$ is the number of cues per trial, and $N_i = 10$ is the number of units in the RNNs' second hidden layer.

This is a proxy for the network's metabolic or energetic consumption.

4.8.2 Efficient coding: code sparsity

We quantify the sparsity of activations in the second hidden layer based on the statistical overlap of unit activations across trials. Specifically, we define code sparsity as a decreasing function of the likelihood of multiple units being simultaneously active, relative to their typical activity distributions.

Let us say that unit i is “active” if its response $L_2(i)$ strictly exceeds the a^{th}

percentile of its marginal activity distribution, where $a \in [0, 100]$ is an arbitrary activation threshold (expressed in the normalized units of cumulative distributions). Let $N_{\text{active}}(a, s(x), t)$ denote the number of active units at decision time t , for the input sequence $s(x)$, under the threshold a . The probability that two randomly selected units are simultaneously active is computed as:

$$P(a, s(x), t) = \frac{N_{\text{active}}(a, s(x), t) (N_{\text{active}}(a, s(x), t) - 1)}{N_i(N_i - 1)} \quad (16)$$

Finally, the code sparsity S is defined as:

$$S = 1 - \frac{1}{101 \times N_S \times N_t} \sum_{a=0}^{100} \sum_{s(x) \in S(X)} \sum_{t=1}^{N_t} P(a, s(x), t) \quad (17)$$

When S tends towards unity, code sparsity is maximal, i.e. units almost never co-activate across trials and decision time steps.

4.8.3 Efficient coding: information transfer rate

For a given network unit, information transfer rate is maximal when the noise-induced information loss is minimal, i.e. when the entropy of the unit's output (across sampled cue sequences) is maximal. Let $f : x \mapsto y$ be the input-output activation function of neural net units. At the low noise limit, information transfer rate IR is defined as the expected, log-transformed, absolute gradient of the activation function [41]:

$$IR = \mathbb{E} \left[\ln \left| \frac{\partial f}{\partial x}(x) \right| \right] \quad (18)$$

Here, each RNN's second layer unit i receives a linear combination of activations from the first hidden layer and recurrent activations from itself at previous time steps, which are passed through a sigmoid activation function (with bias):

$$f(x) = \frac{1}{1 + \exp(-x + b)} \quad (19)$$

913 The derivative of the sigmoid simplifies to:

$$\frac{\partial f}{\partial x}(x) = f(x)(1 - f(x)) \quad (20)$$

914 Therefore, the network's average information transfer rate reduces to:

$$AIR = \frac{1}{N_S \times N_t \times N_i} \sum_{s(x) \in S(X)} \sum_{t=1}^{N_t} \sum_{i=1}^{N_i} \ln \left(L_2^{s(x)}(i, t) \times (1 - L_2^{s(x)}(i, t)) \right) \quad (21)$$

915 where $L_2^{s(x)}(i, t)$ denotes the activation of unit i at step t in response to the input
 916 sequence $s(x)$.

917 4.8.4 Connection sparsity

918 We quantify the sparsity of RNNs' recurrent connections using the Gini index
 919 [54], computed over the absolute values of the entries $(w_i)_{i \in \{1, \dots, n\}}$ in the recurrent
 920 weight matrix $W_{\text{recurrent}}$. The weights are first sorted in ascending order of their
 921 absolute magnitude, such that $|w_1| \leq |w_2| \leq \dots |w_n|$. The Gini index reflects the
 922 degree of unequal sharing of connection strengths across all pairs of connected units:

$$G = 1 - \frac{2}{n \sum_{i=1}^n |w_i|} \sum_{i=1}^n |w_i| \left(n - i + \frac{1}{2} \right) \quad (22)$$

923 A Gini index close to 1 indicates high sparsity, which proxies a low synaptic main-
 924 tenance cost. Note that fault-tolerance is typically achieved using high functional
 925 redundancy (i.e. low sparsity), though this is not a necessary condition.

926 4.8.5 E/I balance

927 The excitatory/inhibitory balance of a circuit refers to the relative contribu-
 928 tion of excitatory and inhibitory inputs on features of the circuit's evoked responses
 929 (e.g., selective tuning). In electrophysiological studies, E/I balance is usually eval-

uated using intracellular conductance estimates across a wide range of conditions and contexts. Here, we quantify a structural E/I balance, which we define as the ratio between the number of positive and strictly negative connection weights. This measure includes all hidden-layer connections, encompassing both the feedforward weights W_{forward} and the recurrent weights $W_{\text{recurrent}}$. Formally:

$$E/I \text{ balance} = \frac{\#\{w \geq 0 | w \in W_{\text{forward}} \cup W_{\text{recurrent}}\}}{\#\{w < 0 | w \in W_{\text{forward}} \cup W_{\text{recurrent}}\}} \quad (23)$$

Note that RNNs that exhibit mostly excitatory connections (E/I balance $\gg 1$) may exhibit divergent activity dynamics, which precludes accurate value computations (at least in late phases of decision trials).

4.8.6 Resilience to neural loss

Let $n \in \{0, 1, \dots, N_i\}$ denote the number of lesioned units in the second hidden layer, and let $C_n \in \{1, \dots, N_i\}^n$ be a combination of such n units. Lesioning a unit was done by externally setting its activation to 0 across all time steps and trials. Let $z_{\text{model}}(s(x), t, C_n) \in \{0, 1\}$ denote the RNN's simulated choice in response to an input sequence $s(x)$ at time t , under a lesion C_n of its integration layer. Let $z_{\text{rational}}(s(x), t)$ denote the rational choice (i.e. the preferred option based upon options' expected value) for the same input sequence and time step. We define the resilience to neural loss R_{rational} as the retained rational choice rate, averaged over all possible lesion configurations involving 10% to 50% of all units in the second hidden layer:

$$R_{\text{rational}} = \frac{1}{5 \times N_S \times N_t} \sum_{n=1}^5 \frac{1}{\binom{10}{n}} \sum_{C_n \in C(n)} \sum_{s(x) \in S(X)} \sum_{t=1}^{N_t} 1_{\{z_{\text{model}}(s(x), t, C_n) = z_{\text{rational}}(s(x), t)\}} \quad (24)$$

where $C(n)$ denotes the set of possible combinations of n units within an ensemble of 10 units. When R_{rational} tends towards unity, the behavioral outputs of RNNs are

951 unaffected by virtual lesions.

952 We also computed an alternative metric, $R_{\text{consistent}}$, by comparing the lesioned
953 model's behavior to the choice of its own non-lesioned counterpart (which may
954 deviate from rational expected values):

$$R_{\text{consistent}} = \frac{1}{5 \times N_S \times N_t} \sum_{n=1}^5 \frac{1}{\binom{10}{n}} \sum_{C_n \in C(n)} \sum_{s(x) \in S(X)} \sum_{t=1}^{N_t} 1_{\{z_{\text{model}}(s(x), t, C_n) = z_{\text{model}}(s(x), t, C_0)\}}$$
 (25)

955 Resilience to circuits' damage can also be evaluated using virtual lesions of con-
956 nections within the network. In this analysis, a proportion $n \in \{10, 20, 30, 40, 50\}$
957 % of the RNN's connection weights are set to 0, and resilience to neural loss
958 is measured as the retained rational choice rate. Note that we did this sepa-
959 rately for recurrent connections only ($W_{\text{recurrent}}$) and for all hidden-layer connections
960 ($W_{\text{forward}} \cup W_{\text{recurrent}}$). All results can be eyeballed on Fig. S15.

961 References

962 [1] Laurence T. Hunt et al. "Triple dissociation of attention and decision com-
963 putations across prefrontal cortex". In: *Nature Neuroscience* 21.10 (2018),
964 pp. 1471–1481. DOI: [10.1038/s41593-018-0239-5](https://doi.org/10.1038/s41593-018-0239-5).

965 [2] Matthew F. S. Rushworth et al. "Frontal Cortex and Reward-Guided Learning
966 and Decision-Making". In: *Neuron* 70.6 (2011), pp. 1054–1069. DOI: [10.1016/j.neuron.2011.05.014](https://doi.org/10.1016/j.neuron.2011.05.014).

968 [3] Alizée Lopez-Persem et al. "Four core properties of the human brain valuation
969 system demonstrated in intracranial signals". In: *Nature neuroscience* 23.5
970 (2020), pp. 664–675. DOI: [10.1038/S41593-020-0615-9](https://doi.org/10.1038/S41593-020-0615-9).

971 [4] Maël Lebreton et al. “An automatic valuation system in the human brain:
972 evidence from functional neuroimaging”. In: *Neuron* 64.3 (2009), pp. 431–439.
973 DOI: [10.1016/j.neuron.2009.09.040](https://doi.org/10.1016/j.neuron.2009.09.040).

974 [5] Camillo Padoa-Schioppa and Katherine E. Conen. “Orbitofrontal Cortex: A
975 Neural Circuit for Economic Decisions”. In: *Neuron* 96.4 (2017), pp. 736–754.
976 DOI: [10.1016/j.neuron.2017.09.031](https://doi.org/10.1016/j.neuron.2017.09.031).

977 [6] Oscar Bartra, Joseph T. McGuire, and Joseph W. Kable. “The valuation sys-
978 tem: A coordinate-based meta-analysis of BOLD fMRI experiments examining
979 neural correlates of subjective value”. In: *NeuroImage* 76 (2013), pp. 412–427.
980 DOI: [10.1016/j.neuroimage.2013.02.063](https://doi.org/10.1016/j.neuroimage.2013.02.063).

981 [7] Lesley K. Fellows. “Deciding how to decide: ventromedial frontal lobe damage
982 affects information acquisition in multi-attribute decision making”. In: *Brain:*
983 *A Journal of Neurology* 129.Pt 4 (2006), pp. 944–952. DOI: [10.1093/brain/awl017](https://doi.org/10.1093/brain/awl017).

985 [8] Raphaëlle Abitbol et al. “Neural Mechanisms Underlying Contextual Depen-
986 dency of Subjective Values: Converging Evidence from Monkeys and Hu-
987 mans”. In: *Journal of Neuroscience* 35.5 (2015), pp. 2308–2320. DOI: [10.1523/JNEUROSCI.1878-14.2015](https://doi.org/10.1523/JNEUROSCI.1878-14.2015).

989 [9] Camillo Padoa-Schioppa. “Neuronal Origins of Choice Variability in Economic
990 Decisions”. In: *Neuron* 80.5 (2013), pp. 1322–1336. DOI: [10.1016/j.neuron.2013.08.039](https://doi.org/10.1016/j.neuron.2013.08.039).

991 [10] Camillo Padoa-Schioppa. “Range-Adapting Representation of Economic Value
992 in the Orbitofrontal Cortex”. In: *Journal of Neuroscience* 29.44 (2009),
993 pp. 14004–14014. DOI: [10.1523/JNEUROSCI.3751-09.2009](https://doi.org/10.1523/JNEUROSCI.3751-09.2009).

994 [11] Alizée Lopez-Persem, Philippe Domenech, and Mathias Pessiglione. “How
995 prior preferences determine decision-making frames and biases in the human
996 brain”. In: *eLife* 5 (2016). Ed. by Michael J Frank, e20317. DOI: [10.7554/eLife.20317](https://doi.org/10.7554/eLife.20317).

998 [12] Antonio Rangel, Colin Camerer, and P. Read Montague. “A framework for
999 studying the neurobiology of value-based decision making”. In: *Nature Reviews. Neuroscience* 9.7 (2008), pp. 545–556. DOI: 10.1038/nrn2357.

1000

1001 [13] Zahid Padamsey and Nathalie L. Rochefort. “Paying the brain’s energy bill”.
1002 In: *Current Opinion in Neurobiology* 78 (2023), p. 102668. DOI: 10.1016/j.j.
1003 conb.2022.102668.

1004 [14] Anjali Amrapali Vishwanath et al. *Mitochondrial Ca²⁺ efflux controls neuronal metabolism and long-term memory across species*. 2024. DOI: 10.1101/2024.02.01.578153.

1005

1006

1007 [15] Zahid Padamsey et al. “Neocortex saves energy by reducing coding precision
1008 during food scarcity”. In: *Neuron* 110.2 (2022), 280–296.e10. DOI: 10.1016/j.neuron.2021.10.024.

1009

1010 [16] D. Attwell and S. B. Laughlin. “An energy budget for signaling in the grey matter of the brain”. In: *Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism* 21.10 (2001), pp. 1133–1145. DOI: 10.1097/00004647-200110000-00001.

1011

1012

1013

1014 [17] Jules Brochard and Jean Daunizeau. “Efficient value synthesis in the orbitofrontal cortex explains how loss aversion adapts to the ranges of gain and loss prospects”. In: *eLife* (2024). DOI: 1.

1015

1016

1017 [18] Lu Chen et al. “Homeostatic plasticity and excitation-inhibition balance: The
1018 good, the bad, and the ugly”. In: *Current Opinion in Neurobiology* 75 (2022),
1019 p. 102553. DOI: 10.1016/j.conb.2022.102553.

1020

1021

1022 [19] Vikaas S. Sohal and John L. R. Rubenstein. “Excitation-inhibition balance as
1023 a framework for investigating mechanisms in neuropsychiatric disorders”. In:
Molecular Psychiatry 24.9 (2019), pp. 1248–1257. DOI: 10.1038/s41380-019-0426-0.

1024

1024 [20] Saket Navlakha et al. “Topological properties of robust biological and compu-
1025 tational networks”. In: *Journal of The Royal Society Interface* 11.96 (2014),
1026 p. 20140283. DOI: [10.1098/rsif.2014.0283](https://doi.org/10.1098/rsif.2014.0283).

1027 [21] Hiroaki Kitano. “Towards a theory of biological robustness”. In: *Molecular*
1028 *Systems Biology* 3.1 (2007), p. 137. DOI: [10.1038/msb4100179](https://doi.org/10.1038/msb4100179).

1029 [22] Guang Chen et al. “Modularity and robustness of frontal cortical networks”.
1030 In: *Cell* 184.14 (2021), 3717–3730.e24. DOI: [10.1016/j.cell.2021.05.026](https://doi.org/10.1016/j.cell.2021.05.026).

1031 [23] Shyam Srinivasan and Charles F. Stevens. “Robustness and fault tolerance
1032 make brains harder to study”. In: *BMC Biology* 9.1 (2011), pp. 1–3. DOI:
1033 [10.1186/1741-7007-9-46](https://doi.org/10.1186/1741-7007-9-46).

1034 [24] Muneki Ikeda et al. *Circuit Degeneracy Facilitates Robustness and Flexibility*
1035 *of Navigation Behavior in C.elegans*. 2018. DOI: [10.1101/385468](https://doi.org/10.1101/385468).

1036 [25] Matthew Chalk, Olivier Marre, and Gašper Tkačik. “Toward a unified the-
1037 ory of efficient, predictive, and sparse coding”. In: *Proceedings of the Na-*
1038 *tional Academy of Sciences* 115.1 (2018), pp. 186–191. DOI: [10.1073/pnas.1711114115](https://doi.org/10.1073/pnas.1711114115).

1040 [26] W. B. Levy and R. A. Baxter. “Energy efficient neural codes”. In: *Neural*
1041 *Computation* 8.3 (1996), pp. 531–543. DOI: [10.1162/neco.1996.8.3.531](https://doi.org/10.1162/neco.1996.8.3.531).

1042 [27] Torsten Hoefler et al. “Sparsity in deep learning: pruning and growth for effi-
1043 cient inference and training in neural networks”. In: *The Journal of Machine*
1044 *Learning Research* 22.1 (2021), 241:10882–241:11005.

1045 [28] Mathias Pessiglione and Jean Daunizeau. “Bridging across functional models:
1046 The OFC as a value-making neural network”. In: *Behavioral neuroscience*
1047 135.2 (2021), pp. 277–290. DOI: [10.1037/BNE0000464](https://doi.org/10.1037/BNE0000464).

1048 [29] Vincent B. McGinty and Shira M. Lupkin. “Behavioral read-out from popu-
1049 lation value signals in primate orbitofrontal cortex”. In: *Nature Neuroscience*
1050 26.12 (2023), pp. 2203–2212. DOI: [10/gs78nc](https://doi.org/10/gs78nc).

1051 [30] Justin M. Fine et al. “Abstract Value Encoding in Neural Populations But Not
1052 Single Neurons”. In: *Journal of Neuroscience* 43.25 (2023), pp. 4650–4663. DOI:
1053 10.1523/JNEUROSCI.1954-22.2023.

1054 [31] Caleb E. Strait, Tommy C. Blanchard, and Benjamin Y. Hayden. “Reward
1055 Value Comparison via Mutual Inhibition in Ventromedial Prefrontal Cortex”.
1056 In: *Neuron* 82.6 (2014), pp. 1357–1366. DOI: 10/f56xkp.

1057 [32] Sébastien Ballesta and Camillo Padoa-Schioppa. “Economic Decisions through
1058 Circuit Inhibition”. In: *Current Biology* 29.22 (2019), 3814–3824.e5. DOI: 10.
1059 1016/j.cub.2019.09.027.

1060 [33] Seung-Lark Lim, John P. O’Doherty, and Antonio Rangel. “The Decision
1061 Value Computations in the vmPFC and Striatum Use a Relative Value Code
1062 That is Guided by Visual Attention”. In: *Journal of Neuroscience* 31.37 (2011),
1063 pp. 13214–13223. DOI: 10.1523/JNEUROSCI.1246-11.2011.

1064 [34] Laurence T. Hunt, W.M. Nishantha Malalasekera, and Steven W. Kennerley.
1065 *Recordings from three subregions of macaque prefrontal cortex during an in-*
1066 *formation search and choice task*. CRCNS.org. DOI: 10.6080/K0PZ5712. URL:
1067 <https://crcns.org/data-sets/pfc/pfc-7>.

1068 [35] John P. O’Doherty, Ueli Rutishauser, and Kiyohito Iigaya. “The hierarchical
1069 construction of value”. In: *Current opinion in behavioral sciences* 41 (2021),
1070 p. 71. DOI: 10.1016/J.COBEHA.2021.03.027.

1071 [36] Matthew FS Rushworth et al. “Valuation and decision-making in frontal cor-
1072 tex: one or many serial or parallel systems?” In: *Current Opinion in Neurobi-*
1073 *ology*. Decision making 22.6 (2012), pp. 946–955. DOI: 10/f4hkhh.

1074 [37] Camillo Padoa-Schioppa and John A. Assad. “The representation of economic
1075 value in the orbitofrontal cortex is invariant for changes of menu”. In: *Nature*
1076 *neuroscience* 11.1 (2008), pp. 95–102. DOI: 10.1038/NN2020.

1077 [38] Camillo Padoa-Schioppa and John A. Assad. “Neurons in the orbitofrontal
1078 cortex encode economic value”. In: *Nature* 441.7090 (2006), pp. 223–226. DOI:
1079 10.1038/NATURE04676.

1080 [39] Erie D. Boorman et al. “How Green Is the Grass on the Other Side? Fron-
1081 topolar Cortex and the Evidence in Favor of Alternative Courses of Action”.
1082 In: *Neuron* 62.5 (2009), pp. 733–743. DOI: 10.1016/j.neuron.2009.05.014.

1083 [40] Sharna D. Jamadar et al. “The metabolic costs of cognition”. In: *Trends in
1084 Cognitive Sciences* 0.0 (2025). DOI: 10.1016/j.tics.2024.11.010.

1085 [41] Jean-Pierre Nadal and Nestor Parga. “Nonlinear neurons in the low-noise limit:
1086 a factorial code maximizes information transfer”. In: *Network: Computation in
1087 Neural Systems* 5.4 (1994), pp. 565–581. DOI: 10.1088/0954-898X_5_4_008.

1088 [42] Dong-Ping Yang, Hai-Jun Zhou, and Changsong Zhou. “Co-emergence of
1089 multi-scale cortical activities of irregular firing, oscillations and avalanches
1090 achieves cost-efficient information capacity”. In: *PLoS computational biology*
1091 13.2 (2017), e1005384. DOI: 10.1371/journal.pcbi.1005384.

1092 [43] Junya Hirokawa et al. “Frontal cortex neuron types categorically encode single
1093 decision variables”. In: *Nature* 576.7787 (2019), pp. 446–451. DOI: 10.1038/
1094 s41586-019-1816-9.

1095 [44] Nir Moneta, Shany Grossman, and Nicolas W. Schuck. “Representational
1096 spaces in orbitofrontal and ventromedial prefrontal cortex: task states, val-
1097 ues, and beyond”. In: *Trends in Neurosciences* (2024). DOI: 10.1016/j.tins.
1098 2024.10.005.

1099 [45] Eric B. Knudsen and Joni D. Wallis. “Taking stock of value in the orbitofrontal
1100 cortex”. In: *Nature Reviews. Neuroscience* 23.7 (2022), pp. 428–438. DOI: 10.
1101 1038/s41583-022-00589-2.

1102 [46] Thelma Landron et al. “Dissociation of Value and Confidence Signals in the
1103 Orbitofrontal Cortex during Decision-Making: An Intracerebral Electrophys-
1104 iology Study in Humans”. In: *Journal of Neuroscience* 45.18 (2025). DOI:
1105 [10.1523/JNEUROSCI.1740-24.2025](https://doi.org/10.1523/JNEUROSCI.1740-24.2025).

1106 [47] Laurence T. Hunt et al. “Mechanisms underlying cortical activity during value-
1107 guided choice”. In: *Nature neuroscience* 15.3 (2012), pp. 470–476. DOI: [10.1038/NN.3017](https://doi.org/10.1038/NN.3017).

1109 [48] Vitaly Maiorov and Allan Pinkus. “Lower bounds for approximation by MLP
1110 neural networks”. In: *Neurocomputing* 25.1 (1999), pp. 81–91. DOI: [10.1016/S0925-2312\(98\)00111-8](https://doi.org/10.1016/S0925-2312(98)00111-8).

1112 [49] Namig J. Guliyev and Vugar E. Ismailov. “Approximation capability of two
1113 hidden layer feedforward neural networks with fixed weights”. In: *Neurocom-
1114 putting* 316 (2018), pp. 262–269. DOI: [10.1016/j.neucom.2018.07.075](https://doi.org/10.1016/j.neucom.2018.07.075).

1115 [50] Daniel L. K. Yamins et al. “Performance-optimized hierarchical models pre-
1116 dict neural responses in higher visual cortex”. In: *Proceedings of the National
1117 Academy of Sciences of the United States of America* 111.23 (2014), pp. 8619–
1118 8624. DOI: [10.1073/PNAS.1403112111](https://doi.org/10.1073/PNAS.1403112111).

1119 [51] Charlotte Caucheteux, Alexandre Gramfort, and Jean-Rémi King. “Evidence
1120 of a predictive coding hierarchy in the human brain listening to speech”. In:
1121 *Nature Human Behaviour* 7.3 (2023), pp. 430–441. DOI: [022-01516-2](https://doi.org/10.1038/s41562-
1122 022-01516-2).

1123 [52] Jean Daunizeau, Vincent Adam, and Lionel Rigoux. “VBA: A Probabilistic
1124 Treatment of Nonlinear Models for Neurobiological and Behavioural Data”. In:
1125 *PLOS Computational Biology* 10.1 (2014), e1003441. DOI: [10.1371/journal.pcbi.1003441](https://doi.org/10.1371/journal.pcbi.1003441).

1127 [53] Nikolaus Kriegeskorte. “Relating population-code representations between
1128 man, monkey, and computational models”. In: *Frontiers in Neuroscience* 3
1129 (2009). DOI: 10.3389/neuro.01.035.2009.

1130 [54] Trevor Gale, Erich Elsen, and Sara Hooker. *The State of Sparsity in Deep*
1131 *Neural Networks*. 2019. arXiv: 1902.09574[cs, stat].