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Abstract5

Making good decisions is essential for survival and success, yet humans6

and animals often exhibit perplexing irrational decision-making whose biolog-7

ical origin remains poorly understood. Recent theoretical work suggests that8

some forms of irrational decisions may arise from limited coding precision9

or metabolic budget in individual orbitofrontal neurons. Here, we consider10

the alternative possibility that systematic errors in decision-relevant compu-11

tations are the inevitable consequence of the internal connectivity structure12

within orbitofrontal networks, which was molded under more distal biologi-13

cal constraints. We first trained cohorts of artificial neural networks to per-14

form rational decision-relevant computations. Remarkably, they exhibited15

most electrophysiological coding properties of orbitofrontal neurons recorded16

in monkeys engaged in a preference-based decision task. We then distorted17

their internal connectivity to reproduce monkeys’ irrational choices. This in-18

duced systematic interferences in decision-relevant computations that gener-19

alize across individuals, at both the behavioral and neural level. Importantly,20

irrational networks also display enhanced behavioral resilience to neural loss21

when compared to their rational counterparts. This suggests that irrational22

behavior may be the incidental outcome of distal evolutionary pressure on the23

tolerance to orbitofrontal circuit’s damage.24
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1 Introduction25

People and animals arguably act, in some circumstances, against their own inter-26

est. Why does irrational behavior persist, despite its potential costs to survival and27

fitness? Standard decision theory posits that rational decisions rely on estimating28

and comparing the expected value of each available alternative option in the choice29

set. Thus, irrational behavior may emerge from the covert mechanisms through30

which the brain constructs, maintains or compares option values. Decades of work31

in human and non-human primates show that these computational processes involve32

a specific subset of brain systems, including – but not limited to – orbitofrontal33

(OFC), anterior cingulate (ACC) and dorsolateral prefrontal (dlPFC) cortices [1,34

2]. While the relative contribution of these subsystems is not well understood, a35

robust finding across studies is that orbitofrontal neurons encode value, regardless36

of the type of option, and whether subjects are engaged in explicit decision-making37

or in the subjective evaluation of single options [3–6]. Accordingly, neuropsycholog-38

ical studies of brain-damaged patients demonstrate that lesions to the orbitofrontal39

cortex induce irrational value-based decisions without impairing other types of high-40

level cognitive processes [7]. This means that the effective rationality of decisions41

hinges on the integrity of OFC circuits. But even in the absence of clear anatomical42

lesion, value processing in the OFC is known to exhibit systematic distortions, which43

can lead to irrational context-dependent behavioral biases. For example, value cod-44

ing in the OFC is modulated by its pre-stimulus baseline activity [8, 9], adapts to45

the recent range of option values [10], and depends on whether a given option is46

the status-quo alternative [11] or is currently attended [12]. Taken together, these47

results suggest that OFC circuits are organized in such a way that they process48

value-related information in a moderately, yet consistently, suboptimal manner. In49

turn, this raises the basic question of why haven’t OFC circuits evolved to minimize50

suboptimal distortions?51

Our working assumption is that evolutionary pressure eventually selected for52
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OFC computations that are “rational enough”, given the constraints that may53

act at the neurobiological level. In other words, what looks like irrational com-54

putations might actually be deemed optimal, once considering the neurobiological55

constraints under which brain circuits operate. A prominent example is the ener-56

getic budget of neural circuits, which encompasses both synaptic maintenance and57

activity-dependent firing costs [13]. These constraints are demonstrably tight: the58

mitochondrial metabolic supply of neurons is actively restricted at the expense of59

circuit-level computational efficiency [14], and a scarcity of external resources (e.g.,60

food) eventually results in impaired neural processing [15]. This supports the idea61

that the brain has evolved so-called “efficient” neural coding strategies that trade62

off computational precision for energetic costs [16]. Interestingly, variants of such63

mechanisms explain value range adaptation effects in the OFC and the irrational64

behavioral patterns that ensue [17]. But theoretical work also emphasizes other65

types of tradeoffs that arise from demands on the robustness or fault-tolerance of66

neural circuits. A widely debated notion is that neural circuits must maintain their67

excitatory-inhibitory balance to ensure stability and/or homeostasis [18]. Disruption68

of the E/I balance has even been proposed as a core pathophysiological mechanism69

in several neuropsychiatric conditions [19]. Another possibility, which is pervasive70

in biological systems, is the need to minimize vulnerability to localized damage [20,71

21]. Although direct empirical evidence for such a constraint on neural circuits is72

comparatively sparser, recent work indicates that neural circuits that subtend, e.g.73

motor behavior and working memory, achieve resilience to neural loss through archi-74

tectural redundancy [22–24]. This is important because redundant neural networks75

are notoriously energy-inefficient [25–27]. In other words, OFC circuits may have76

evolved under competing architectural constraints. But then: how do we identify77

which neurobiological constraints might have steered OFC computations away from78

rationality?79

We start with the premise that any constraint of the sort discussed above will80
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ultimately shape the architecture of OFC networks in ways that distort value com-81

putations and compromise decision rationality. This is, in fact, trivially observed82

in artificial neural network models of the OFC trained to perform candidate value83

computations while complying with these constraints (see Supplementary Material).84

Critically however, the form of irrational behavior that emerges depends on both the85

nature of the constraint and the specific value computations the OFC is assumed86

to perform. This is because a given type of value computation requires a tailored87

neural network architecture, whose native compliance with the above constraints is88

largely arbitrary. We thus reasoned as follows. If we knew what the OFC would89

look like if it had evolved in the absence of constraints, then we could compare90

its -counterfactual- architecture to that of actual OFC networks. We argue that91

artificial neural networks are valuable tools here, as their connectivity structure de-92

termines both the computations they perform and the activity patterns they exhibit93

in response to inputs or cues. Thus, a legitimate artificial neural network model of94

the OFC should exhibit activity patterns that increasingly resemble those of OFC95

neurons as it learns to perform the value computations that are characteristic of the96

OFC.97

In this work, we consider the paradigmatic case of binary decisions under risk –98

that is, where the choice set consists of two alternatives, each defined by the proba-99

bility and magnitude of prospective rewards. Numerous empirical recordings of OFC100

neurons are available during tasks in which macaque monkeys make such decisions.101

Here, we reanalyze an existing dataset in which decision cues – i.e. option-specific102

reward magnitude or probability – are revealed one at a time, while randomizing103

their sequence order across trials. This design provides a unique empirical esti-104

mate of the dynamics of information content in the OFC as value computations105

unfold over within-decision time [1]. In line with previous literature, we distinguish106

between two broad types of value computations: value synthesis and value com-107

parison. The former implies that the OFC progressively integrates decision cues to108
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compute the value of both options, which can be concurrently read out on possibly109

orthogonal subspaces of OFC neural ensembles [5, 28–30]. The latter reduces to110

directly updating the value difference between the two options as a new decision111

cue becomes available [1, 31, 32]. Both value synthesis and value comparison can112

be implemented using one of five distinct neural encoding formats, which vary ac-113

cording to how the identity of the attended option is represented (e.g., left/right114

versus default/alternative), and how option values are framed (e.g., left/right, de-115

fault/alternative, or attended/non-attended) [11, 33]. Together, this yields a total116

of ten candidate scenarios regarding OFC value computations.117

We first train recursive neural networks or RNNs to perform each candidate value118

computation in a rational manner, given arbitrary decision cue sequences. We note119

that this is not a trivial task, as it requires the network to maintain a memory trace120

of previously attended cues, while remaining invariant to the order in which cues121

are presented. It turns out that RNNs can reliably learn to solve this class of prob-122

lems from virtually any random initialization of their connectivity. At this point,123

we identify which, among these ten candidate types of value computations, yield124

legitimate RNN models of the OFC. To do so, we compare the full set of recorded125

OFC neural responses with the activity patterns of simulated RNNs exposed to the126

same decision trials as those experienced by the monkeys, at various stages of RNN127

training. As we will see, this eventually selects two specific types of value compu-128

tations, which effectively are counterfactual models of OFC networks that would129

have evolved without any neurobiological constraint. We then distort the internal130

connectivity of these networks to reproduce monkeys’ irrational choices in the task131

(about 20% of all choices). As we will show, these distorted RNNs make behavioral132

and neural predictions that generalize across monkeys. Finally, we compare ratio-133

nal and irrational RNN models of the OFC, in terms of their energetic budget, the134

sparsity of their connectivity structure, their E/I balance, and their robustness to135

neural loss. This enables us to identify which neurobiological constraint may have136
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shaped OFC computations.137

2 Results138

2.1 Identification of legitimate RNN models of OFC circuits139

We took advantage of an open dataset of single unit activity recordings from140

the OFC, the dlPFC and the ACC of two macaque monkeys (n = 189, 135 and141

183 neurons respectively) engaged in value-based decision-making (22, 618 trials in142

total) [1, 34]. At each trial, monkeys chose between two options presented on the left143

and right sides of a screen, each defined by the probability and prospective amount144

of a rewarding juice (see Methods, Fig. 1a). Each decision cue (representing either145

the probability or the magnitude of the – currently attended – option) appeared146

sequentially and then disappeared. The monkeys could commit to a decision at any147

point after the second cue without necessarily sampling the remaining cues and were148

free to decide which cue to sample if they decided to continue the trial.149

As we will see, monkeys make decisions that integrate both currently attended150

and remembered cues. In line with recent empirical work, we hypothesized that151

the OFC may implement one of two candidate decision-relevant computations: (1)152

computing the value of both options independently [29, 35] (“value synthesis”) or153

(2) computing the difference between option values [5, 36] (“value comparison”).154

Both value synthesis and comparison can be implemented using recurrent artificial155

neural networks (RNNs), which operate under the same conditions as monkeys in156

the task. In particular, RNNs access cues sequentially and in an encoding format157

that specifies attribute type and rank, as well as option identity (see below). At158

each cue onset, these inputs are sent to a first hidden layer (cue-encoding), whose159

units feed their output forward to a second hidden layer (cue-integration), from160

which the RNN’s outputs are linearly decoded (see Fig. 1b and Methods). The161

integration layer relies on internal recurrent connections to combine currently and162
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previously attended cues, and progressively update its ongoing computations [28].163

Thus, value synthesis and comparison require distinct recurrent connectivity struc-164

tures. Now, both value synthesis and comparison require specifying how options are165

identified, which is debated in the existing literature. The OFC may do so based166

on, e.g., spatial location [37] (left vs. right), temporal order [28] (first vs. second),167

or attentional focus [33] (attended vs. unattended). In principle, both OFC inputs168

(decision cues) and outputs (option values) may encode option identity in a differ-169

ent format, irrespective of whether the OFC operates value synthesis or comparison.170

We thus systematically tested all possible combinations, which resulted in ten co-171

horts of RNNs (two types of value computations combined with five input-output172

format variations; see Methods). Importantly, each cohort gathers a thousand RNN173

instances that sample the manifold of admissible connectivity structures, following174

random weight initializations and training datasets. Note that we did not endow175

RNNs with the capacity to decide which cue to attend to or when to commit to a176

decision; rather, we trained them to operate value synthesis or comparison indepen-177

dently of such processes, which are treated as arbitrary.178

To begin with, we aimed to identify legitimate counterfactual, idealized RNN179

models of the OFC. To this end, we adopt a normative approach that obviates the180

need for empirical data in training RNNs. Cohorts of candidate RNNs were initial-181

ized with randomly distributed weights and subsequently trained to compute the182

expected value of options, as defined by rational decision theory – that is, the prod-183

uct of reward magnitude and probability. When tested on actual monkey decisions184

at the time of choice, these rational models predicted 79% of choices (monkey F:185

78%, monkey M: 80%). In fact, the subjective value profiles estimated from monkey186

choices (see Methods) closely resemble that of expected value (see Fig. 3a and Fig.187

S1). Thus, rational RNNs provide a reasonable first approximation to monkeys’188

behavior.189

Crucially, although all rational RNNs yield identical decisions in the task, their190
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Figure 1: Designing RNNs to solve a decision task. a, Task design. Adapted
from Hunt et al., (2018) [1]. Monkeys chose between the left and right option based on
sequentially sampled informative cues representing either reward probability or magnitude.
The locations of the first two cues were fixed, while subsequent cues could be freely chosen.
First, a blue light indicated the location of the next available cue, which was revealed once
the monkey fixated on the blue area and disappeared afterwards. The monkey could
choose an option using a joystick at any point after the second cue. b, RNN architecture
(see Methods). At each cue onset, the RNN inputs encode the currently attended cue,
while the outputs are the RNN’s current estimate of option values or value difference.
Applying a softmax mapping to the RNN outputs yields choice probability, where options
are identified with regard to spatial location, attentional focus or default status.

internal representations are different. For example, it is almost impossible to de-191

code option values framed in a given option identity format from response patterns of192

RNNs that were trained under different option identity formats (see Fig. 2c). Also,193

individual option values are less reliably decoded from the activity of value compar-194

ison RNNs than from value synthesis RNNs (paired t-test between value synthesis195

and value comparison models: p < 10−15 for all input-output format variations).196

We thus asked whether any of these RNN cohorts also capture key aspects of OFC197

neural informational geometry, despite not having been exposed to neural record-198

ings during training. To test this, we replicated the two types of analysis conducted199

by Hunt et al. (2018) on single units’ recordings, which we also performed on the200

RNNs’ integration layer. We first ran a representational similarity analysis at first201
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cue onset, building representational dissimilarity matrices (RDMs) by correlating202

population activity vectors in response to all (2 × 2 × 5 = 20) possible cues (see203

Methods, Fig. S2 and Fig. S9). In brief, RDMs identify which cue features elicit204

discriminable response patterns across neurons when only a single cue is available.205

However, generalizing this approach to later stages of the trial becomes challenging,206

as RDMs face a combinatorial explosion when multiple cues have been sampled. To207

track neural representation geometry at all stages of decision trials, we also quanti-208

fied whether and how inter-neuron differences in their sensitivity to current and past209

cues are preserved across cue onset times (cf. cross-correlation matrices or CCMs –210

see Methods). One can think of RDMs and CCMs as two distinct summary statis-211

tics of the informational geometry of distributed neural systems. We then derived212

the two ensuing neural distance metrics by comparing OFC neurons and RNN units213

at each stage of the training process (see Methods). Note that even untrained – i.e.214

random – RNNs exhibit some degree of neural similarity with the OFC, because they215

respond to value-relevant input cues. Untrained RNNs thus effectively provide the216

distribution of neural distances under the null. Now, when being trained to perform217

a specific value computation, RNNs modify their informational geometry and hence218

their neural distance to the OFC. We considered that legitimate RNN models of the219

OFC are those RNN cohorts that significantly decrease both neural distance metrics220

as a result of training (despite being blind to OFC activity patterns). It turns out221

that only two variants out of ten cohorts satisfy this selection criterion (see Fig. 2b,222

Fig. 3b); we only consider these for the remainder of the paper (extended results for223

all model variants are shown in Fig. S7 to Fig. S15 of the Supplementary Material).224

In brief, both selected RNN models receive input cues that encode option identity225

using the temporal format, while computing option values in the attentional format.226

They differ only in terms of the type of value computation: one RNN cohort per-227

forms value synthesis (neural CCM distance, paired t-test: p < 10−15, neural RDM228

distance, paired t-test: p < 10−15), whereas the other performs value comparison229
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(CCM: p < 10−5, RDM: p < 10−15). Although we cannot yet arbitrate between230

these two scenarios, we have clearly narrowed the set of plausible counterfactual231

idealized OFC models.232

Figure 2: Selection of candidate counterfactual idealized RNN models of the
OFC. a, Average value profiles of rational models and subjective value profiles of each
monkey (fitted on choices). b, Neural distance trajectories between OFC and RNN cohorts
during rational training. Dots show the average distance of RNN cohorts (across the
1000 RNN instances), computed using either RDMs (x-axis) or CCMs (y-axis). Black
dots indicate the initial (random) state of RNN cohorts, colored dots denote their final
rational state. Only two RNN cohorts significantly improve in both neural distance metrics
after rational training (grey area). c, Information encoding in rational RNN models.
Each column corresponds to a RNN cohort; each row corresponds to a type of decoded
information. Numbers and grey nuances indicate the percentage of variance explained by
a linear decoder applied to the RNNs’ integration layer activity, averaged across the 1000
instances of the corresponding RNN cohort. All combinations are significantly better
decoded than chance (paired t-test against the R2 decoded by untrained models: all
p < 10−15).

At this point, we asked whether and how counterfactual idealized OFC models233

need to be modified to explain irrational behavior. We thus retrained the selected234
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rational RNNs to predict (a subset of) monkeys’ choices, of which about 20% are ir-235

rational. To preserve the interpretability of their value computations while allowing236

perturbations during progressive cue integration, RNNs were initialized with their237

trained rational weights, and retraining was restricted to recurrent connections in238

the integration layer. At the time of choice, retrained irrational RNNs achieved239

84% choice prediction accuracy on average (monkey F: 83% (SE 1 × 10−4), monkey240

M: 85% (SE 1 × 10−4)) on a test dataset, significantly outperforming rational mod-241

els (paired t-test: both p < 10−15; see Fig. 3a). Moreover, models trained on one242

monkey significantly outperformed their rational counterparts on the other monkey243

(paired t-test: both p < 10−15; see Fig. 3a). This suggests that irrational RNNs244

captured hidden deterministic mechanisms underlying irrational behavior that gen-245

eralize across trials and individuals.246

We have leveraged the flexibility of RNNs to model both rational decision-making247

and systematic irrational choices, each relying on a similar structure of intercon-248

nected units. Next, we sought to determine whether irrational RNNs qualify as249

realistic models of OFC computations (despite not having been exposed to neural250

recordings during training). Remarkably, when retraining RNNs to fit the (partly)251

irrational behavior of monkeys, their neural distance to the OFC decreases even fur-252

ther compared to their rational counterparts (neural CCM distance, paired t-test;253

value synthesis model: p = 9 × 10−3, value comparison model: p < 10−15). Fur-254

thermore, this improvement generalizes across monkeys, as shown when evaluating255

the neural distance of irrational RNNs to the other monkey (neural CCM distance,256

paired t-test: both p < 10−15; see Fig. 3c). However, one may argue that informing257

RNN models about monkeys’ actual choices may have facilitated the resemblance to258

any brain system that contributes to behavioral control in the task, thus challenging259

the anatomical specificity of our results. To address this point, we also computed260

the neural distance of irrational RNNs to dlPFC and ACC neurons. We first checked261

that empirical summary statistics of neural information geometry vary more across262
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Figure 3: Behavioral and neural realism of candidate RNN models of the OFC. a, Balanced
accuracy for predicting monkey choices. Each color corresponds to one of the two candidate models (blue:
value synthesis, orange: value comparison). Lighter distributions correspond to rational models, darker
distributions to irrational models, and distributions with a dashed outline represent irrational models trained
on one monkey and tested on the other. Within each violin plot, the horizontal line denotes the mean,
and the thicker vertical line represents the interquartile range (25th – 75th percentile). Asterisks indicate
significant differences, with p-value < 0.025. b, Construction scheme of a CCM, applied to either OFC
electrophysiological recordings or RNN activity patterns. Top left: for each OFC neuron (resp. RNN unit),
mean firing rate response (resp. activity) at each cue onset is concurrently regressed across trials against
the rank of all previously attended cues. Top right: correlation, across neurons (resp. units), between the
ensuing regression coefficients for different cues – and possibly obtained at different onset times. Bottom:
CCM: each cell in the matrix shows the correlation across neurons (resp. units) for a given pair of regression
coefficients. The upper half of the matrix shows the results computed on “option trials” (where the two first
cues characterize the same option), while the lower half corresponds to “attribute trials” (where the two
first cues characterize the same attribute, but different options). Asterisks indicate significant correlations,
with p-value < 0.001 (correction for multiple comparisons across CCM cells). c, Neural CCM distance
between models and the OFC, same format as panel a. The white distribution corresponds to random
RNN initializations (identical for both RNN cohorts). Asterisks indicate significant differences, with p-
value < 0.0167.d, Neural CCM distance between irrational models and the OFC, the dlPFC and the ACC.
Asterisks indicate significant differences, with p-value < 0.0167. e, Comparison of predicted (RNNs) and
measured (OFC) CCM cells. Each color corresponds to one of the two candidate models (blue: value
synthesis, orange: value comparison). Each pair of dots corresponds to a single CCM cell, for each monkey
separately. Left: rational RNNs, Right: retrained (irrational) RNNs. f, Distribution of the slopes of CMM
cell pairs in irrational RNNs (see panel e). Asterisks indicate significantly positive distribution, with p-value
< 0.05.

12



brain regions than across monkeys (p < 10−15; see Fig. S4). When comparing neu-263

ral distances across brain regions, we found that irrational RNNs were significantly264

closer to the OFC than to the dlPFC and the ACC (neural CCM distance, paired265

t-test: p < 10−15 for all comparisons between areas; see Fig. 3d).266

One may also ask whether selected RNNs exhibit stereotypical trial-by-trial ac-267

tivity variations that are commonly observed in the OFC. First, we focused on268

the mixed selectivity of OFC neurons and attempted to classify units according to269

three distinct response profiles (see Methods): “option value cells”, which encode270

the value of a single option (either attended or unattended); “chosen option cells”,271

which encode the binary identity of the chosen option; and “chosen value cells”,272

which encode the value of the chosen option (see Fig. 4a). In line with the existing273

literature [32, 38], we found that the trial-by-trial firing rate variations of recorded274

OFC neurons can be matched to one of the three response profile types at the time275

of choice (see Fig. 4a). Importantly, this is also the case for integration units of276

selected RNNs, albeit with a slight over-representation of offer value units. We277

also analyzed trial-by-trial variations in the grand mean activity – i.e. the average278

response across OFC neurons or across RNN integration units –, with the aim of279

verifying common fMRI findings in human OFC. In particular, we asked whether280

grand mean activity correlates, across trials, with either the value difference between281

the chosen and unchosen options (based on the monkey’s choice on each trial; see282

Methods) or choice confidence (defined as the probability, at the time of choice, that283

processing the remaining unattended cues would not alter the value comparison).284

Consistent with previous fMRI work [3, 39], we found that the grand mean firing285

rate of OFC neurons significantly correlates with chosen/unchosen value difference286

for both monkeys (monkey F: p = 0.048, monkey M: p < 10−10; see Fig. 4b) and287

confidence for monkey M (monkey F: p = 0.1, monkey M: p < 10−7; see Fig. 4c).288

Interestingly, this correlation was also significantly positive, on average, in both289

cohorts of models, both for chosen/unchosen value difference (one-sample t-test, ra-290
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tional models: p < 10−6, p < 10−15; irrational models: p = 5 × 10−1, p < 10−15; see291

Fig. 4b) and confidence (one-sample t-test, rational models: p < 10−15, p < 10−15;292

irrational models: p = 1 × 10−3, p < 10−15; see Fig. 4c and Fig. S14).293

Figure 4: Comparison of trial-by-trial activity variations between RNNs and
OFC neurons. a, Proportion of units classified as offer value, chosen value, or chosen
option cells, in RNNs models and in recorded OFC neurons (at the time of choice). b,
Correlation between the RNNs’ grand mean activity and chosen/unchosen value difference.
Asterisks indicate a significantly positive correlation, with p-value < 0.05. c, Correlation
between the RNNs’ grand mean activity and decision confidence. Asterisks indicate a
significantly positive distribution, with p-value < 0.05.

Together, these findings suggest that the selected RNNs perform value computa-294

tions that are – behaviorally and neurally – realistic. We next seek to characterize295

the systematic distortions in cue processing that lead to irrational choice behavior.296

2.2 Analysis of computational interferences in irrational297

RNNs298

First, we quantified potential interference effects across decision cues. Recall299

that, by assumption, rational choices should be solely driven by the informational300

content of decision cues and thus remain invariant w.r.t. cue presentation order.301
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In contrast, irrational interference effects would manifest as variability in RNNs’302

value outputs across random permutations of cue presentation order, all else being303

equal. We thus performed Monte-Carlo simulations of selected RNNs, quantifying304

the standard deviation of value outputs across randomized cue presentation orders,305

for all possible cue combinations and at each cue onset time (see Methods). By con-306

struction, rational RNN models exhibit almost no variability. However, irrational307

RNNs exhibit significantly stronger interference effects than their rational counter-308

parts (paired t-test at each time step: both p < 10−15). Importantly, interference309

effects increase as within-trial decision time unfolds (paired t-test within each co-310

hort between step 2 and step 4: both p < 10−15; see Fig. 5a and Fig. 5b). This311

suggests that systematic perturbations in sequential cue processing may accumulate312

over time. Accordingly, monkeys’ choices become more irrational – i.e. less con-313

sistent with their average preferences – as decision time unfolds (two-sample t-test314

across sessions at step 2 vs. step 4, monkey F: p < 10−15; monkey M: p = 0.4; at315

step 3 vs. step 4, monkey F: p = 6 × 10−3; monkey M: p < 10−10 see Fig. 5c). One316

may argue that this interference effect may only be apparent, because choices that317

are triggered later in time may correspond to difficult decisions. Indeed, the average318

absolute difference between subjective option values – a proxy for decision ease –319

also tends to decrease when decision time increases (two-sample t-test across trials320

at step 2 vs. step 4, monkey F: p < 10−15; monkey M: p < 10−14; see Fig. 5d).321

To control for the effect of decision difficulty, we regressed irrational choice rates322

onto the absolute value difference, across trials. Reassuringly, the residuals of this323

regression still increase as decision time unfolds (two-sample t-test across trials, step324

2 vs. step 4, monkey F: p < 10−9; monkey M: p = 0.03; see Fig. S5). This means325

that monkeys’ rationality deteriorates beyond what can be expected from decision326

difficulty. A possibility is that cue traces within the RNNs’ integration layer may327

leak into one another, either across options or across attributes. To investigate this,328

we separated “option trials” – where the second cue reveals the missing attribute of329
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the same option as the first cue – from “attribute trials” – where the second cue re-330

veals the same attribute as the first cue, but for the other option. At the second cue331

onset, interference effects are significantly stronger in option trials than in attribute332

trials, for both RNN types (paired t-test within each cohort: both p < 10−15). This333

is also the case for one monkey, based on residual irrational choice rates (two-sample334

t-test across trials, monkey F: p = 0.02; monkey M: p = 0.1; see Fig. S5). This335

suggests that cue leakage effects are more pronounced within options – i.e. across336

attributes – than across options. Thus, we expect the integration of previously and337

currently attended cues to be asymmetrical, above and beyond differences induced338

by the type of information that they convey – i.e. reward probability vs. magnitude.339

To test this, we quantified the effective value output of selected RNNs as a function340

of the rank of both previously and currently attended cues, irrespective of cue types341

(see Methods). As expected, rational RNNs output values that exhibit no significant342

asymmetry on average (see Fig. 5e). In contrast, irrational RNNs output values that343

are mostly influenced by the previously attended cue (see Fig. 5f and Fig. 5f). When344

quantified in terms of the relative gradient of value w.r.t. the rank of previously and345

currently attended cues (see Methods), we find that the asymmetry is significantly346

stronger in irrational RNNs than in rational RNNs (paired t-test within each cohort:347

both p < 10−15; see Fig. 5i and Fig. 5j). This asymmetry is also significantly present348

in monkeys’ choices (one-sample t-test across sessions: both p < 10−14; see Fig. 5h).349

These results suggest that previously attended cues leave a persisting value trace350

that partly resists novel value-relevant information.351

In summary, irrational OFC circuits differ from their rational counterfactual352

variants in that they exhibit slight but systematic interference effects during value353

computations, which are due to peculiarities in their internal connectivity structure.354

We now ask whether these peculiarities may bring some form of biological advantage355

that may have overcompensated the behavioral irrationality that they induce.356
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Figure 5: Interference mechanisms in irrational models and monkeys. a, Stan-
dard deviation of the irrational value synthesis RNNs’ outputs in response to random
permutations of cue sequence orders (y-axis), as a function of cue onset times (x-axis)
during option trials only (light) or attribute trials only (dark). Asterisks between time
steps indicate p-value < 0.05, asteris within time steps indicate p-value < 0.0167. b,
Same format as panel a, but for irrational value comparison RNNs. c, Rate of monkeys’
irrational choices (y-axis), as a function of cue onset time, for both attribute an option
trials. Asterisks indicate that the difference between time steps (averaged over trial types)
are significant within each monkey, with p-value < 0.0167. d, Absolute subjective value
difference, same format as panel c. e, Average value output of rational RNNs (greyscale
nuances), as a function of the rank of both previously (x-axis) and currently (y-axis) cues
(see Methods). f, g, Same format as panel e, but for irrational value synthesis and value
comparison RNNs, respectively. h, Same format as panel e, but for both monkeys. i,
Average difference in the gradient of the RNNs’ value output w.r.t. cue rank (attended
cue minus unattended cue, see Methods), for both rational and irrational variants of value
synthesis RNNs. The asterisk denotes a significant difference between rational and irra-
tional RNNs, with p-value < 0.05. j, Same format as panel i, for value comparison RNNs.
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2.3 Comparing the biological advantages of rational and ir-357

rational RNNs358

First, we compared rational and irrational RNNs in terms of the metabolic cost359

of sustaining their respective structures. Since action potentials and synaptic main-360

tenance are major sources of energetic consumption in the brain [40], we quantified361

two proxies for metabolic cost: average network activity and sparsity of their re-362

current connections (see Methods). However, we found no systematic significant363

difference in either measure of metabolic cost between rational and irrational RNNs364

(paired t-test, average network activity, value synthesis: p = 0.04; value comparison:365

p = 0.3; connection sparsity, value synthesis: irrational less sparse than rational with366

p < 10−11; value comparison: irrational more sparse than rational with p < 10−15;367

see Fig. 6a and Fig. 6b).368

Second, we took inspiration from other variants of efficient coding models, which369

rather suggests that brain circuits self-organize to maximize either information trans-370

fer rate or code sparsity. We quantify these in terms of the average log-transformed371

absolute gradient of units’ activation function [17, 41] and the average rate of units’372

co-activation across all possible units pairs [42, 43], respectively (see Methods). We373

found no significant difference in code sparsity (paired t-test, both p > 0.4; see374

Fig. 6c). Interestingly however, we found that irrational RNNs exhibit significantly375

lower information transfer rate than their rational counterparts (paired t-test, both376

p < 10−15; see Fig. 6d). This suggests that rational value computations may already377

be maximally efficient – at least w.r.t. information transfer rate. Retrospectively,378

this may be considered an inherent virtue of rational information processing, which379

precludes interference-induced information loss.380

Third, we reasoned that irrational circuits may benefit from a better excitatory-381

inhibitory balance, which would ensure stability and/or homeostasis [18]. However,382

we found no significant difference in the relative proportion of negative and posi-383

tive connection weights between rational and irrational RNNs (paired t-test, value384

18



synthesis: p = 0.2; value comparison: p = 0.02; see Fig. 6e).385

Figure 6: Potential biological benefits of irrational circuits. For all panels, asterisks indicate a
significant difference between rational and irrational RNNs, with p-value < 0.0083 (0.05

6 ). Blue distributions
correspond to value synthesis models, while orange distributions correspond to value comparison models.
a, Metabolic cost, measured as the average network activity, over all trials, trial steps, and units. b, Code
sparsity, measured as the average co-activation probability over all units pairs. c, Information transfer
rate, measured as the average log-transformed absolute gradient of units activation function. d, Connection
sparsity, measured using Gini index. e, excitatory-inhibitory balance, measured as the relative proportion
of negative and positive connection weights. f, Tolerance to neural loss, measured as the average rational
choice rate from 10% to 50% of lesioned units.

Finally, we reasoned that the internal connectivity structure of irrational circuits386

may enable some form of functional redundancy, which would render them more387

tolerant to neural loss. To test this, we simulated random virtual lesions of RNN388

integration units and measured the retained rate of rational choices. As expected,389

rational choice rate monotonically decreases when the fraction of lesioned units390

increases, for all types of models. Thus, we quantify neural loss tolerance to neural391

loss in terms of the rational choice rate averaged over lesion sizes (from 10% tp 50% of392

integration units, see Methods). We find that irrational RNNs exhibit significantly393

stronger tolerance to neural loss than their rational counterparts, irrespective of394

value computations (paired t-test, both p < 10−15; see Fig. 6f).395
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3 Discussion396

In this work, we asked whether irrational behavior may not be explained by distal397

constraints that act on the neurobiology of brain decision-making systems. First, we398

adopted a normative approach to identify idealized RNN models of the OFC, which399

proxy the counterfactual, unconstrained evolution of OFC circuits. We found that400

only a specific subset of candidate RNNs reproduces the informational geometry401

of the OFC – specifically, those that receive inputs encoding option identity in a402

temporal format (first vs. second option), while computing option values in an403

attentional format (attended vs. unattended option). Second, we retrained the404

selected RNNs to account for monkeys’ irrational choices when making decisions405

under risk. Importantly, these retrained irrational RNNs eventually make out-of-406

sample behavioral and neural predictions that generalize across individuals. We also407

show that their peculiar internal connectivity induce deterministic interferences in408

value computations that explain the irrational variability of monkeys’ choices across409

within-trial attentional trajectories. Finally, we compare the potential biological410

benefits of rational and irrational variants of OFC circuits and show that the latter411

exhibits much greater tolerance to neural loss. Irrational interferences in value412

computation may thus be understood as an incidental byproduct of selective pressure413

favoring the robustness of OFC circuits to anatomical damage.414

That irrational behavior is the incidental outcome of neurobiological constraints415

is not a novel idea. In particular, most existing theoretical and empirical work416

highlight the metabolic cost of information processing in the brain [13]. To our417

knowledge, this work is the first attempt to demonstrate the importance of resilience418

to circuit damage in this context. We contend that this demonstration is theoretical419

in essence, at least when compared to empirical work that employ causal – e.g.,420

genetic – manipulations to disclose proximal neurobiological constraints [14, 15].421

Arguably however, it would have been difficult to provide direct empirical evidence422

for our main claim, at least in primates. This is inherent to the distal nature of the423
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constraint, which is more readily addressed from a computational perspective. In424

turn, our conclusions rely on a set of modeling assumptions: we will now discuss425

these.426

To begin with, we restricted the set of candidate OFC computations to variants427

of value synthesis and value comparison. Although a few recent empirical studies428

consider other types of OFC computations [44], this prior selection is representative429

of current debates regarding OFC’s contributions to decision making [45]. Impor-430

tantly, we show that some of these variants reproduce complex features of the OFC’s431

informational geometry, even without being informed with behavioral and/or neu-432

ral data (i.e., from first principles). This includes established results regarding the433

mixed selectivity of OFC neural populations (cf. “option value cells”, “chosen value434

cells” and “choice cells”) [5, 38]. Moreover, we show that these computational sce-435

narios are anatomically specific, in that their neural predictions do not resemble436

electrophysiological recordings in either dlPFC or ACC. Retrospectively, this as-437

sumption may thus not be so restrictive. Note that the particular RNN variants438

that we validated using OFC single unit recordings are consistent with landmark439

fMRI studies of value-based decision making. In particular, our results directly con-440

firm fMRI studies promoting the attentional format of value coding [33]. But this441

is not the only possibility. For example, if a default option can be identified prior442

to decision onset (e.g., in terms of a prior preference over superordinate categories),443

then pre-stimulus activity in the OFC seems to encode its subjective value, and444

the strength of this response predicts peoples’ irrational attachment to their default445

preference [11]. In other words, the OFC may use a value coding format that rather446

distinguishes default versus alternative options. Interestingly, this also aligns with447

our neural and behavioral results, under the assumption that early preferences –448

e.g., based upon the first attended cue – set a default option. The reason is twofold.449

First, as long as attention remains focused on the first option, attentional and de-450

fault/alternative value-coding formats are formally indistinguishable. Second, the451
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persisting value trace of the firstly attended cue will, on average, appear as a bias452

towards the default option. In summary, although the statistical resemblance to the453

default/alternative hypothesis may be stronger in trials where decisions are triggered454

prematurely – i.e., before all relevant cues have been processed – we argue that our455

findings remain compatible with existing representational frameworks of value cod-456

ing in the OFC. Beyond value-coding format issues, one may find it disappointing457

that we could not disambiguate computational scenarios of value comparison or value458

synthesis. The underlying question here is whether the OFC directly implements459

choice, or whether its role is limited to assigning values to available options [28, 46].460

When implemented in the form of winner-take-all networks, the former scenario461

explains reproduced findings in electrophysiological and neuroimaging studies, in462

particular: the observed mixed selectivity of OFC cells [5, 32], as well as the appar-463

ent encoding of the value difference between chosen and unchosen options – at least464

during late phases of decision making [47]. Interestingly, we have shown that such465

findings can be equally well reproduced by RNNs performing either value synthesis466

or value comparison. This calls for experiments that are designed to distinguish467

these kinds of computational scenarios, as opposed to testing one of them.468

Also, we did not vary the global architecture of our artificial neural nets, which469

consisted of a layer of feature-encoding units sending their outputs to a layer of470

recurrently connected integration units. In line with recent neural net approaches471

to value computations in the OFC [17, 28], we adopted the minimal architecture472

that ensures universal approximation capabilities while using a limited number of473

sigmoidal units [48, 49]. Note that a major computational bottleneck of both value474

synthesis and value comparison scenarios is OFC circuits’ capacity for combining475

value-relevant attributes of arbitrary number and type [35]. Now, the above two-476

layer architecture provides a flexible and simple solution to this problem that rests477

on the second layer’s trained ability to integrate arbitrary sequences of attributes,478

whose type and rank are encoded in separate pools of the first layer units. In479
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particular, this circumvents the need for otherwise unrealistic, context-dependent480

changes in connectivity with upstream brain systems involved in recognizing or481

storing value-relevant information. Nevertheless, the relative simplicity of our de-482

sign contrasts with previous studies that favored off-the-shelf deep neural nets to483

approximate the hierarchical organization of, e.g., primates’ visual ventral stream484

[50] or humans’ language networks [51]. From a machine learning perspective, tasks485

such as visual perception and speech comprehension are inherently difficult prob-486

lems, which remained unsolved until the advent of deep neural networks trained487

on massive labeled datasets. In these domains, objective task performance reliably488

predicts statistical similarity with neural data. This relationship, however, does not489

generalize to our findings: RNNs tend to more closely resemble OFC data when490

they permit systematic, error-inducing interferences. In retrospect, it is remarkable491

that our value synthesis/comparison RNNs exhibit such realistic features, at both492

the behavioral and neural levels. This is despite the degeneracy of RNN wiring493

profiles w.r.t. each type of value computation, which we systematically explored by494

repeating the training process across many random initializations of RNN param-495

eters. Arguably, the ensuing marginalization process renders our results robust to496

local minima issues. This statistical benefit would have been prohibitively costly to497

match using deep neural net architectures.498

One might also argue that rational and irrational RNNs may have been com-499

pared in an unfair manner. For example, we chose to train rational RNNs under a500

normative approach, which precludes idiosyncratic variations in risk attitudes. The501

rationale here was to obtain neural nets that could serve as neutral and fully inter-502

pretable reference points, in that their computational objective was under our control503

– i.e. computing expected values, as prescribed by decision theory. We acknowl-504

edge that, when it comes to measuring statistical similarity to neural recordings,505

irrational RNNs may somehow benefit from being trained on individual behavioral506

datasets. However, the fact that irrational RNNs make out-of-sample predictions507
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that generalize across individuals rather suggests that they have captured hidden,508

yet shared, decision mechanisms. In any case, there is no reason to think that this509

training difference would, in principle, favor irrational RNNs in terms of resilience510

to circuit damage. A related concern is whether the latter may be the artefactual511

byproduct of re-training, which may – in principle – provide an additional opportu-512

nity for improving efficiency or robustness. This is the reason why we also explored513

another training strategy for irrational RNNs, which starts from the same randomly514

initialized parameter sets as rational RNNs. As evidenced in the Results section515

(see also Fig. S7, Fig. S8 and Fig. S15), our conclusions remain unchanged under516

this alternative training strategy.517

In conclusion, we believe our modeling assumptions are tenable, at least when518

compared to state-of-the-art computational studies in the field. They enabled us to519

reverse the usual approach to disclosing distal neurobiological constraints on ratio-520

nality, which typically rests on highlighting conflicts with the demands of behavioral521

performance (cf. Fig. S6). In contrast, we identify realistic mechanisms that ex-522

plain observed deviations to rationality, and explore their potential neurobiological523

advantages. We believe that this may be a fruitful method for investigating related524

evolutionary or developmental issues in cognitive neuroscience.525

4 Methods526

4.1 Task design527

Monkeys were seated in a behavioral chair with their heads restrained. Each528

trial began when the monkey fixated on a central fixation cue for 500 ms. At the529

start of the trial, two options were presented, each consisting of two hidden cues530

initially masked by grey squares. One of these squares then turned blue, indicating531

the first cue available for sampling. When the subject fixated on the blue square,532

the corresponding picture cue was revealed and had to be continuously fixated for533
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300 ms before it was re-masked.534

All picture cues had been previously learned and were associated with either535

probability or magnitude information. Probability cues indicated reward probabil-536

ities of 10%, 30%, 50%, 70%, or 90%, while magnitude cues represented reward537

magnitudes of 0.15, 0.35, 0.55, 0.75, or 0.95 arbitrary units (AU).538

Following the initial cue, a second blue square highlighted the next available cue,539

which had to be sampled using the same procedure. This second cue was either the540

other cue of the same option (option trial) or the cue of the other option associated541

with the same attribute (attribute trial). After the second cue, the two remaining542

cues were simultaneously highlighted with blue squares, allowing the subject to freely543

choose which one to sample next, or to select one of the two options using a joystick.544

If a third cue was sampled, the subject could then either sample the final cue or545

make a choice. Once the fourth cue was revealed, the subject was required to make546

a choice.547

4.2 Neural data548

The designing of the task, behavioral and neural datacollection were entirely549

performed by Hunt et al. 2018 [1], and published in an open dataset [34].550

Neuronal activity was recorded from three brain regions in each monkey: the551

orbitofrontal cortex (OFC), the anterior cingulate cortex (ACC) and the dorsolat-552

eral prefrontal cortex (dlPFC). During each session, neurons were simultaneously553

recorded from two or all three regions using between 8 and 24 electrodes. Neurons554

with a firing rate below 1 Hz were excluded. In total, for monkey F, 108 neurons555

were retained in the OFC, 97 in the ACC, and 107 in the dlPFC. For monkey M,556

87 neuron were retained in the OFC, 49 in the dlPFC, and 101 in the ACC. These557

recordings were collected across 24 session for monkey F and 29 sessions for monkey558

M. Within each subject and brain area, neurons were pooled into pseudopopulations559

on which all subsequent analyses were performed.560
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To enable direct comparison with RNN models, which operate in discrete time,561

we averaged each neuron’s firing rate over a 100-400 ms window following cue onset.562

This provided a single activity measure per neuron per trial time step, consistent563

with the temporal granularity of activity in the RNNs.564

4.3 Value profile estimation565

We estimated the subjective value profile of each monkey (and each model) using566

standard statistical procedures, based solely on the agent’s choices. More precisely,567

we fitted the underlying value function, under the assumption that choices followed568

a simple softmax mapping of the difference in option values:569

p(choose option 1) = 1
1 + exp (− (V (p1, m1) − V (p2, m2)))

(1)

where pi and mi denote the reward probability and magnitude of option i, as known570

by the agent at the time of choice, and V (p, m) is the corresponding subjective571

value. Equation (1) provides a binomial likelihood function for observed choices,572

given the unknown monkeys’ value function. Parameterizing the value function573

then enables us to regress trial-by-trial choices against option attributes. To allow574

for maximal modelling flexibility, we employed a semi-parametric approach, whereby575

each possible combination of probability and magnitude – including cases in which576

one or both attributes were unknown at the time of choice – is captured using a577

specific model parameter. In other words, the only modelling constraint here is578

that the same value function applies to all options, but its functional form remains579

unconstrained.580

4.4 RNN architecture581

Let t ∈ {1, 2, 3, 4} denote the time step index at which cue is revealed or attended582

within a decision trial. The RNN component variables are defined as follows:583
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• −→x (t) ∈ R3: Inputs vector at time t. These include the attribute rank and type584

– probability or magnitude –, as well as the identity of the currently attended585

option (see below).586

• −→
L1(t) ∈ R9: Unit activation vector in the first hidden layer at time t.587

• −→
L2(t) ∈ R10: Unit activation vector in the second hidden layer at time t.588

• −→y (t) ∈ R1 (for value comparison models) or −→y (t) ∈ R2 (for value synthesis589

models): Output prediction at time t.590

At the first time step (t = 1), information propagates through the network591

according to the following equations:592

−→
L1(t) = f

(
Wencode · −→x (t) −

−→
b1

)
(2)

−→
L2(t) = f

(
Wforward ·

−→
L1(t) −

−→
b2

)
(3)

−→y (t) = Wreadou ·
−→
L2(t) (4)

At later time steps (t > 1), the second hidden layer incorporates recurrent ac-593

tivity elicited by the previous cues. This means that Equation (4) is replaced with:594

−→
L2(t) = f

(
Wforward ·

−→
L1(t) + Wrecurrent ·

−→
L2(t − 1) −

−→
b2

)
(5)

Here, W■ refers to matrices of connection weights, and −→
b■ are bias vectors applied595

to the corresponding hidden layers. The weights Wencode and biases −→
b1 where initially596

set such that each admissible cue rank (x1) preferentially activated a dedicated unit597

in a rank-specific pool of first layer units. Similarly, each admissible cue type (x2)598

and option identity (x3) preferentially activated one out of two units each (again in599

secluded pools of first layer units). To ensure distributed encoding within each pool,600

the activation profiles of first layer units were configured to tile the domain of their601
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specific input uniformly: whenever one unit’s activity reached 75% of its maximum,602

the “adjacent” units in the pool were 25% active.603

To impose a biologically plausible constraint on firing rates, we used a sigmoid604

activation function f for all units in the hidden layers:605

f : x 7→ 1
1 + exp(−x) (6)

Importantly, when structurally organized into two hidden layers, neural nets with606

a limited number of sigmoidal units possess universal approximation capabilities [48,607

49].608

The RNN received inputs one at a time, in a sequential manner – as monkeys did609

in the task. The sequence order is determined by the exogenous control of attention,610

which samples cues in an arbitrary fashion within a decision trial. Let x1(t), x2(t)611

and x3(t) denote the components of the input vector −→x (t) ∈ R3:612

• x1(t) encodes the normalized rank of the attended cue, with the following613

mapping:614

Magnitude cue Probability cue Cue rank x1

0.15 AU 10% 1 0.1

0.35 AU 30% 2 0.3

0.55 AU 50% 3 0.5

0.75 AU 70% 4 0.7

0.95 AU 90% 5 0.9

615

• x2(t) encodes the attribute type. Probability: x2 = 0; magnitude: x2 = 1.616

• x3(t) encodes the identity of the attended option. Option 1: x3 = 0; option 2:617

x3 = 1.618

Note that the identity of the attended option can be expressed in two different619

representation formats: spatial (left vs. right) or temporal (first vs. second). This620

distinction affects the encoding of x3, as illustrated in the following example trials:621
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Trial ID
Attended

option side

x3 in the spatial frame

(right = 0, left = 1)

x3 in the temporal frame

(first = 0, second = 1)

1 Right 0 0

1 Left 1 1

1 Left 1 1

1 Right 0 0

2 Left 1 0

2 Left 1 0

2 Left 0 1

2 Left 0 1

622

Similarly, the outputs of the network can be expressed in different representation623

formats: spatial, temporal, or attentional (attended vs. unattended). The example624

trials below illustrate how the encoding format of option values varies across these625

frames. Let Vleft and Vright denote the values of the left and right options as estimated626

by the network at each cue onset. The statistical similarity between representation627

formats depend on the actual sequence order of cue attendance:628

Trial ID
Attended

option side

Output in the

spatial frame

Output in the

temporal frame

Output in the

attentional frame

1 Right Vright & Vleft Vright & Vleft Vright & Vleft

1 Left Vright & Vleft Vright & Vleft Vleft & Vright

1 Left Vright & Vleft Vright & Vleft Vleft & Vright

1 Right Vright & Vleft Vright & Vleft Vright & Vleft

2 Left Vright & Vleft Vleft & Vright Vleft & Vright

2 Left Vright & Vleft Vleft & Vright Vleft & Vright

2 Right Vright & Vleft Vleft & Vright Vright & Vleft

2 Right Vright & Vleft Vleft & Vright Vright & Vleft

629

Note that not all combinations of input/output formats are trainable. More pre-630

cisely, when the input’s option identity is encoded using the spatial format, then631

29



value outputs can be encoded in all representation formats (3 possibilities). How-632

ever, when the input’s option identity is encoded using the temporal format, then633

the spatial information is lost, which leaves only 2 possible value encoding formats634

(temporal and attention frames). This means that there is only 5 combinations of635

input/output representation formats in total.636

4.5 RNN training637

4.5.1 Rational training638

Models were implemented and trained using MATLAB R2022b with the VBA639

toolbox [52]. The RNN parameters subject to training (Wforward, Wrecurrent and640

−→
b2 ) were initialized as samples from an i.i.d. Gaussian distribution with mean 0641

and variance 0.5. For each RNN model, the training procedure was repeated with a642

different initial random sample, until 1000 trained models reached 95% test accuracy.643

In the main text, we refer to the ensemble of trained RNNs as a “cohort”, each of644

which corresponds to a given type of value computation (value synthesis versus645

value comparison) and a given combination of input/output representation format646

(see above).647

For each model instance in a given RNN cohort, a training set and a testing set648

consisting of 500 trials each were generated. Every trial consisted of a sequence of649

four cues, randomly chosen among the set of different option pairings, and presented650

in a random order. Note that training and testing trials could be classified post-hoc651

as either “attribute trials” or “option trials”, depending on whether the attention652

switched to the second option at the second cue onset, or not.653

Now, so-called “value synthesis” models were trained to output the expected654

value of both options in response to each cue presentation. In contrast, “value655

comparison” models were trained to output the difference in expected value between656

the two options. When both the probability and magnitude of an option were657

30



available, its expected value was computed as their product. If any attribute was658

missing, its rank was replaced by its prior mean under the task distribution.659

Training was terminated when the absolute change in variational free energy660

between VBA successive iterations fell below 10. A network was considered success-661

fully trained if it reached at least 95% of explained variance on its testing set. Each662

RNN cohort consisted of 1000 independently trained model instances, each with a663

unique training set, testing set, and parameter initialization. Importantly, random664

seeds were shared across cohorts, which allowed for fully matched comparisons across665

cohorts.666

4.5.2 Irrational training667

To preserve the interpretability of value computation and input/output repre-668

sentation formats, all network parameters were frozen except for Wrecurrent. The669

network outputs were transformed into choice probabilities via a simple softmax670

mapping: p(choose option 1) = 1
1+exp(−∆V ) .671

In contrast to the rational training phase, where value outputs were evaluated672

at each cue onset, irrational training evaluated the value outputs only at the time of673

choice. Since wrecurrent controls the way RNNs assimilate cue sequences to perform674

their specific value computations, this effectively restricts the admissible sources of675

irrational behavior to within-trial interferences between cues.676

Each RNN instance within each cohort was then re-trained to fit the choices of677

each individual monkey, using a training dataset of 2000 trials randomly selected678

from monkeys’ recorded sessions. This procedure produces two twin versions of679

each retrained irrational model – one for each monkey. We then test their respective680

behavioral and neural predictions within and across monkeys. The former evaluates681

their inter-trial generalization ability, whereas the latter focuses on inter-individual682

generalization ability.683

In a supplementary analysis, we also trained networks to predict monkey choices684
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directly from their initial parameterization, without a prior rational training phase.685

This procedure was thus similar to rational training in terms of training load (cf.686

optimization of all parameters in VBA and no partial freezing of parameters), except687

that value outputs were only evaluated at the time of choice.688

4.5.3 Rational training with constraints689

In another supplementary analysis, we trained RNNs to perform rational value690

computations while simultaneously satisfying neurobiological constraints. More pre-691

cisely, RNN parameters were trained to optimize a tradeoff between the accuracy of692

their value outputs and the compliance to one of the following constraints: minimal693

average firing rate, maximal connection sparsity (considering both feedforward and694

recurrent weights), maximal coding efficiency, or maximal resilience to neural loss695

(see Biological benefits below). To balance these two – possibly conflicting – objec-696

tives, we introduced trade-off weights that varied logarithmically from 10−3 to 103,697

allowing us to modulate the relative importance of “behavioral efficiency” (accuracy698

of value outputs) versus “neural efficiency” (compliance to the neural constraint).699

The results of this training procedure can be eyeballed in Fig. S6.700

4.6 Analysis of informational geometry within neural pop-701

ulations: summary statistics702

4.6.1 Representational similarity analysis703

Let −→
Lx

2(1) denote the vector of activations in the RNN’s second layer in response704

to input −→x at the first cue onset. This vector can be computed for each possible input705

−→xk, which yields 20 distinct activation patterns (i.e., 5 cue ranks ×2 cue types ×2706

options). The representational dissimilarity matrix (RDM) is constructed element707

by element by computing pairwise similarities between these activation vectors [53]:708
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RDMk,l = r
(−→

Lxk
2 (1),

−→
Lxl

2 (1)
)

(7)

where r denotes Pearson’s correlation. If RDMk,l strongly positive, then activity709

patterns are mostly invariant to differences between inputs −→xk a,d −→xl , i.e. the neural710

representation of these inputs are similar. In brief, RDMs enables us to identify711

what input features need to change to elicit distinct neural responses.712

The same procedure is applied to recordings of OFC neurons (as well as to neural713

recordings within the dlPFC and the ACC), using vectors of averaged firing rates714

measured between 100 ms and 400 ms following the first cue onset. This yields two715

RDMs: one for the model (RDMmodel) and one for the OFC data (RDMOFC). Full716

RDM summary statistics for all monkeys and brain regions can be eyeballed in Fig.717

S2, and average RDMs obtained for all RNN cohorts are plotted in Fig. S9.718

Finally, the similarity between these matrices is quantified using a rank-based719

distance metric:720

distRDM = 1 − ρ
(
RDMOFC

upper, RDMmodel
upper

)
(8)

Here, ρ denotes Spearman’s correlation and RDMupper refers to the upper tri-721

angular half of the matrix, excluding the diagonal. We used a rank-based metric722

because experimental neural data is typically much noisier than model activations,723

resulting in compressed correlation ranges that are more appropriately captured by724

rank correlations. The neural RDM distance trajectories between all models and725

brain areas can be eyeballed in Fig. S7, and the details of the comparison with OFC726

recordings are displayed in Fig. S13.727

4.6.2 Cross-correlation matrices728

Unfortunately, the above representational similarity analysis does not scale well729

with the number of input combinations. In our context, its statistical cost is pro-730
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hibitive for later phases of decision trials, when more than one cue has been attended.731

For example, at the second cue onset, there are 400 possible cue combinations, which732

would induce RDMs with almost 79800 entries. This is why we resort to another type733

of summary statistics, which was proposed by Hunt et al. (2018) [1]. In brief, this734

analysis enables us to quantify and compare the multiple traces that cue sequences735

leave on units’ activity, at the cost of partly neglecting differences induced by at-736

tribute types. This simplifying assumption exploits the observed quasi-symmetrical737

impact of reward probability and magnitude on monkeys’ subjective value profiles738

(see Fig. 2a).739

Let L
s(x)
2 (i, t) denote the activation of unit i in the second hidden layer after740

the presentation of a cue at time t ∈ {1, 2, 3}, given a sequence of inputs s(x) of741

length t. We regress each second layer unit’s trial-by-trial activity variations at cue742

onset t concurrently onto trial-by-trial variations of normalized attribute rank in743

all cues, while identifying cues by their appearance order in the sequence. Note744

that we also include two additional regressors, which encode how consistent the745

2nd and 3rd cues (respectively) are w.r.t. the currently preferred option, as well as746

an intercept term. This approach aims at detecting nontrivial memory traces of747

previously attended cues, while ruling out mere confirmation effects in value coding748

neurons. Importantly, we separate “option trials” (where the first two cues belong to749

the same option) from “attribute trials” (where the first two cues describe the same750

attribute – i.e. probability or magnitude – but for both options) prior to performing751

the regression analyses. This yields one set of regression coefficient estimates per752

trial type.753

Let −→
βk(t) ∈ Rnunits denote the vector of t-statistics associated with regression754

coefficient estimates for the kth attended cue (k ∈ {1, 2, 3}), given each second layer755

unit’s activity at time t. This vector measures how sensitive to the kth attended756

cue second layer units are (at time t) in normalized signal-to-noise ratio units. This757

enables a direct quantitative comparison across units, cue presentation orders and758
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decision times. Note that −→
βk(t) vectors that involve cue presentation orders that759

are strictly higher than activity sampling times (i.e. when k > t) are statistically760

meaningless.761

We then define the cross-correlation matrix (CCM) as follows:762

CCMk,k′,t,t′ = ρ
(−→
βk(t), −→

βk′(t′)
)

(9)

where ρ denotes Pearson’s correlation. A strongly positive CCM cell indicates that763

the neurons most sensitive to the kth attended cue at time t arealso those most764

sensitive to the k′th cue at time t′.765

We obtain full CCMs by systematically varying cue presentation orders (k and766

k′) as well as activity sampling times (t and t′), yileding a 9 by 9 symmetrical matrix.767

We then remove CCM cells that are meaningless to avoid statistical illusions possibly768

induced by imperfections in trial randomizations. We repeat this process for both769

trial types (cf. “option trials ”versus “attribute trials”), yielding two CCM types.770

Differences between the two types of CCM cells that involve the first and second cue771

onset times (i.e. CCM1,2,■,■) signal that a shift in the attended option affects the772

network’s distributed computations. In particular, if neurons respond to the value773

difference between options, then one expects CCM1,2,2,2 to be positive for option774

trials, and negative for attribute trials [1].775

We apply the same analysis on recorded data from OFC neurons (as well as776

neurons in the dlPFC and ACC). For each neuron, we compute the average firing777

rate in a 100-400 ms window after each cue onset and regress it against normalized778

attribute ranks of all cues (including the same additional regressors). This provides779

summary statistics whose temporal resolution matches that of RNN models. Full780

CCM summary statistics for all monkeys and brain regions can be eyeballed in Fig.781

S3, average CCMs obtained for all RNN cohorts are plotted in Fig. S9 and the782

distribution of key CCM cells are shown in Fig. S10.783

To compare the informational geometry of RNNs and OFC neural populations,784
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we simply compute the Euclidian distance between the meaningful CCM cells:785

distCCM =

∥∥∥∥∥∥∥∥
 vec(CCMOFC

option)

vec(CCMOFC
attribute)

 −

 vec(CCMmodel
option)

vec(CCMmodel
attribute)


∥∥∥∥∥∥∥∥

2

(10)

The neural CCM distance trajectories between all models and brain areas can786

be eyeballed in Fig. S7 and Fig. S8, and the details of the comparison with OFC787

recordings are displayed in Fig. S13.788

4.6.3 Mixed selectivity: offer value cells, chosen value cells and choice789

cells790

To identify offer value, chosen value, and choice cells, we replicated the analysis791

previously introduced by Padoa-Schioppa and colleagues [38]. When applied to792

neural recordings in the OFC, we relied on subjective value profiles, as estimated793

from monkeys’ choices in the task (see Value profile estimation). To maximize the794

match between analyses, we also use model-specific value profiles for RNNs.795

For each unit, we performed four separate regressions across all trials, using796

four distinct regressors: the value of option 1, the value of option 2, the value of797

the chosen option, and the identity of the chosen option. Note that we match the798

option identity encoding format to the one used by each RNN model. Each unit was799

assigned to the category that yielded the highest percentage of explained variance,800

provided the regression was significant (p-value < 0.05). Otherwise, no category801

was assigned. The distribution of cell categories for all models can be eyeballed in802

Fig. S14.803
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4.7 Analysis of computational interferences in irrational804

RNNs805

4.7.1 Dependency on cue sequence order806

In principle, rational behavior in the task only depends upon the content of807

value-relevant information, but not on its presentation sequence order. Under this808

view, any observed dependency on cue sequence order violates rationality.809

Let ys(x)(t) denote the value difference between options, as can be readout from810

the RNN’s response to an input sequence s(x) of length t – where the sequence s(x)811

is composed of a series of cues presented in a specific order. For value synthesis812

models, we compute ys(x)(t) by subtracting the readouts of both option values (at813

time t). To quantify the dependency on cue presentation order, we first measure814

the standard deviation of ys(x)(t) across all possible permutations of cue orderings815

while keeping the set of t attended cues constant, and then average the results over816

cue sets. We repeat this process separately for option trials and attribute trials,817

meaning that we only consider cue order permutations that are admissible for each818

trial type.819

Let X be the set of all possible combinations of t cues, and for each such set820

x ∈ X, let S(x) denote the set of admissible orderings of those cues (restricted to821

the relevant trial type). Then, the model’s dependency on sequence order at time t,822

denoted d(t), is defined as:823

d(t) − 1
|X|

∑
x∈X

√
Var ({ys(x)(t)|s ∈ S(x)}) (11)

Note that this measure is defined for all decision times starting from the second824

cue onset (t ≥ 2) – and both trial types. This enables us to track the possible825

accumulation of interferences in RNN computations as decision time unfolds.826

Models’ dependency on sequence order is represented in Fig. S12 (top row) for827
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all cohorts.828

Note that this analysis cannot be directly applied to monkeys’ choices, as we829

cannot have access to the monkeys’ internal value estimates for each cue sequence830

order. This is because the total number of unique cue sequence orders is very large:831

specifically, 10000 per trial type (corresponding to 5 cue ranks for each of the 4 cues832

and 4! = 24 possible cue orderings, restricted to valid ones). This number is compa-833

rable to the total number of decision trials for each monkey (Monkey F: 9463 trials;834

Monkey M: 13155 trials), which means that we have no empirical repetitions of cue835

sequence orders. This is the reason why we resort to measures of apparent deviations836

to rational choice, which effectively reduce to detecting trials that are incongruent837

with estimates of monkeys’ subjective preferences (see Fig. 5c and Fig. 5d).838

4.7.2 Persisting value traces839

The above dependency on sequence order may be partly driven by a directional840

bias, whereby the effective weight of each cue is determined by its onset time. For841

example, previously attended cues may weigh more on value outputs than currently842

attended cues, all else being equal. We developed a specific method for detecting843

such persisting value traces, which can be equally applied to both RNN simulations844

and monkeys’ behavior in the task.845

We start by re-estimating value profiles, while allowing for value differences be-846

tween options that are currently or previously attended (at the time of choice), and847

having separated trials by the type of attended cue (reward probability vs magni-848

tude). Let V prob
att denote the pseudo-value function of the attended option when a849

probability cue is attended at the time of choice, and V prob
unatt that of the other (unat-850

tended) option. Let patt and matt be the ranks of the attended option’s probability851

and magnitude, and punatt and munatt those of the unattended option. The choice852

probability for selecting the attended option is given by:853
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p(choose attended option) = 1
1 + exp

(
−

(
V prob

att (patt, matt) − V prob
unatt(punatt, munatt)

))
(12)

This provides a binomial likelihood function for observed choices that are trig-854

gered when a probability cue is attended. To estimate the pseudo-value profiles855

V prob
att and V prob

unatt, we use the same semi-parametric approach as before. The pseudo-856

value profiles V mag
att and V mag

unatt can be estimated similarly, given observed choices that857

are triggered when a magnitude cue is attended.858

Recall that V prob
att (resp. V mag

att ) is the pseudo-value that ensues from currently859

attending a probability (resp., a magnitude) cue, while the magnitude (resp., prob-860

ability) cue was previously attended (if ever). To quantify the relative impact of861

currently and previously attended cues while marginalizing over cue types, we then862

combine V prob
att and V mag

att to form the following average pseudo-value profile Vatt:863

Vatt = 1
2

(
V prob

att + V mag
att

⊤
)

(13)

Importantly, V att is a 6 by 6 pseudo-value profile whose first dimension864

(columns) spans the rank of the currently attended cue, while its second dimension865

(rows) spans the rank of the previously attended cue – including the case where it is866

unknown at the time of choice. A rational agent would exhibit a strictly symmetric867

average pseudo-value profile.868

To quantify potential asymmetries in Vatt, we computed gradients of Vatt with869

respect to the currently and previously attended (or, equivalently, unattended) di-870

mensions. Let Vatt(:, i) denote the yth row (i.e., fixed attended attribute, varying871

unattended attribute) and Vatt(i, :) denote the ith column (i.e., fixed unattended872

attribute, varying attended attribute). Average pseudo-value gradients are given873

by:874
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
∂V att
∂att = 1

5×4
∑5

i=1
∑4

j=1 Vatt(i, j + 1) − Vatt(i, j)
∂V att
∂unatt = 1

5×4
∑4

i=1
∑5

j=1 Vatt(i + 1, j) − Vatt(i, j)
(14)

These gradients capture the average rate of change in the average pseudo-value875

profile w.r.t. changes in the attended or unattended attribute ranks. For example,876

a stronger gradient along the unattended dimension signals a greater sensitivity to877

the previously attended cue. This is the hallmark of a persisting value trace that878

resists novel (currently attended) information. Results can be eyeballed for all RNN879

moels in Fig. S12.880

4.8 Biological benefits881

4.8.1 Efficient coding: average network firing rate882

The average network firing rate f̄ of a model is defined as the average activation883

of RNNs’ second layer units, across all units, time steps, and possible trials:884

f̄ = 1
NS × Nt × Ni

∑
s(x)∈S(X)

Nt∑
t=1

Ni∑
i=1

L
s(x)
2 (i, t) (15)

where S(X) denotes the set of all admissible sequences of 4 cues, NS = 10000 is the885

number of such sequences, Nt = 4 is the number of cues per trial, and Ni = 10 is886

the number of units in the RNNs’ second hidden layer.887

This is a proxy for the network’s metabolic or energetic consumption.888

4.8.2 Efficient coding: code sparsity889

We quantify the sparsity of activations in the second hidden layer based on the890

statistical overlap of unit activations across trials. Specifically, we define code spar-891

sity as a decreasing function of the likelihood of multiple units being simultaneously892

active, relative to their typical activity distributions.893

Let us say that unit i is “active” if its response L2(i) strictly exceeds the ath
894
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percentile of its marginal activity distribution, where a ∈ [0, 100] is an arbitrary895

activation threshold (expressed in the normalized units of cumulative distributions).896

Let Nactive(a, s(x), t) denote the number of active units at decision time t, for the897

input sequence s(x), under the threshold a. The probability that two randomly898

selected units are simultaneously active is computed as:899

P (a, s(x), t) = Nactive(a, s(x), t) (Nactive(a, s(x), t) − 1)
Ni(Ni − 1) (16)

Finally, the code sparsity S is defined as:900

S = 1 − 1
101 × NS × Nt

100∑
a=0

∑
s(x)∈S(X)

Nt∑
t=1

P (a, s(x), t) (17)

When S tends towards unity, code sparsity is maximal, i.e. units almost never901

co-activate across trials and decision time steps.902

4.8.3 Efficient coding: information transfer rate903

For a given network unit, information transfer rate is maximal when the noise-904

induced information loss is minimal, i.e. when the entropy of the unit’s output905

(across sampled cue sequences) is maximal. Let f : x 7→ y be the input-output acti-906

vation function of neural net units. At the low noise limit, information transfer rate907

IR is defined as the expected, log-transformed, absolute gradient of the activation908

function [41]:909

IR = E
[
ln

∣∣∣∣∣∂f

∂x
(x)

∣∣∣∣∣
]

(18)

Here, each RNN’s second layer unit i receives a linear combination of activations910

from the first hidden layer and recurrent activations from itself at previous time911

steps, which are passed through a sigmoid activation function (with bias):912

f(x) = 1
1 + exp(−x + b) (19)
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The derivative of the sigmoid simplifies to:913

∂f

∂x
(x) = f(x) (1 − f(x)) (20)

Therefore, the network’s average information transfer rate reduces to:914

AIR = 1
NS × Nt × Ni

∑
s(x)∈S(X)

Nt∑
t=1

Ni∑
i=1

ln
(
L

s(x)
2 (i, t) ×

(
1 − L

s(x)
2 (i, t)

))
(21)

where L
s(x)
2 (i, t) denotes the activation of unit i at step t in response to the input915

sequence s(x).916

4.8.4 Connection sparsity917

We quantify the sparsity of RNNs’ recurrent connections using the Gini index918

[54], computed over the absolute values of the entries (wi)i∈{1,···n} in the recurrent919

weight matrix Wrecurrent. The weights are first sorted in ascending order of their920

absolute magnitude, such that |w1| ≤ |w2| ≤ · · · |wn|. The Gini index reflects the921

degree of unequal sharing of connection strengths across all pairs of connected units:922

G = 1 − 2
n

∑n
i=1 |wi|

n∑
i=1

|wi|
(

n − i + 1
2

)
(22)

A Gini index close to 1 indicates high sparsity, which proxies a low synaptic main-923

tenance cost. Note that fault-tolerance is typically achieved using high functional924

redundancy (i.e. low sparsity), though this is not a necessary condition.925

4.8.5 E/I balance926

The excitatory/inhibitory balance of a circuit refers to the relative contribu-927

tion of excitatory and inhibitory inputs on features of the circuit’s evoked responses928

(e.g., selective tuning). In electrophysiological studies, E/I balance is usually eval-929
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uated using intracellular conductance estimates across a wide range of conditions930

and contexts. Here, we quantify a structural E/I balance, which we define as the931

ratio between the number of positive and strictly negative connection weights. This932

measure includes all hidden-layer connections, encompassing both the feedforward933

weights Wforward and the recurrent weights Wrecurrent. Formally:934

E/I balance = # {w ≥ 0|w ∈ Wforward
⋃

Wrecurrent}
# {w < 0|w ∈ Wforward

⋃
Wrecurrent}

(23)

Note that RNNs that exhibit mostly excitatory connections (E/I balance ≫ 1)935

may exhibit divergent activity dynamics, which precludes accurate value computa-936

tions (at least in late phases of decision trials).937

4.8.6 Resilience to neural loss938

Let n ∈ {0, 1, ..., Ni} denote the number of lesioned units in the second hidden939

layer, and let Cn ∈ {1, ..., Ni}n be a combination of such n units. Lesioning a unit940

was done by externally setting its activation to 0 across all time steps and trials.941

Let zmodel(s(x), t, Cn) ∈ {0, 1} denote the RNN’s simulated choice in response to942

an input sequence s(x) at time t, under a lesion Cn of its integration layer. Let943

zrational(s(x), t) denote the rational choice (i.e. the preferred option based upon944

options’ expected value) for the same input sequence and time step. We define the945

resilience to neural loss Rrational as the retained rational choice rate, averaged over946

all possible lesion configurations involving 10% to 50% of all units in the second947

hidden layer:948

Rrational = 1
5 × NS × Nt

5∑
n=1

1(
10
n

) ∑
Cn∈C(n)

∑
s(x)∈S(X)

Nt∑
t=1

1{zmodel(s(x),t,Cn)=zrational(s(x),t)}

(24)

where C(n) denotes the set of possible combinations of n units within an ensemble949

of 10 units. When Rrational tends towards unity, the behavioral outputs of RNNs are950
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unaffected by virtual lesions.951

We also computed an alternative metric, Rconsistent, by comparing the lesioned952

model’s behavior to the choice of its own non-lesioned counterpart (which may953

deviate from rational expected values):954

Rconsistent = 1
5 × NS × Nt

5∑
n=1

1(
10
n

) ∑
Cn∈C(n)

∑
s(x)∈S(X)

Nt∑
t=1

1{zmodel(s(x),t,Cn)=zmodel(s(x),t,C0)}

(25)

Resilience to circuits’ damage can also be evaluated using virtual lesions of con-955

nections within the network. In this analysis, a proportion n ∈ {10, 20, 30, 40, 50}956

% of the RNN’s connection weights are set to 0,and resilience to neural loss957

is measured as the retained rational choice rate. Note that we did this sepa-958

rately for recurrent connections only (Wrecurrent) and for all hidden-layer connections959

(Wforward
⋃

Wrecurrent). All results can be eyeballed on Fig. S15.960
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