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Abstract

Making good decisions is essential for survival and success, yet humans
and animals often exhibit perplexing irrational decision-making whose biolog-
ical origin remains poorly understood. Recent theoretical work suggests that
some forms of irrational decisions may arise from limited coding precision
or metabolic budget in individual orbitofrontal neurons. Here, we consider
the alternative possibility that systematic errors in decision-relevant compu-
tations are the inevitable consequence of the internal connectivity structure
within orbitofrontal networks, which was molded under more distal biologi-
cal constraints. We first trained cohorts of artificial neural networks to per-
form rational decision-relevant computations. Remarkably, they exhibited
most electrophysiological coding properties of orbitofrontal neurons recorded
in monkeys engaged in a preference-based decision task. We then distorted
their internal connectivity to reproduce monkeys’ irrational choices. This in-
duced systematic interferences in decision-relevant computations that gener-
alize across individuals, at both the behavioral and neural level. Importantly,
irrational networks also display enhanced behavioral resilience to neural loss
when compared to their rational counterparts. This suggests that irrational
behavior may be the incidental outcome of distal evolutionary pressure on the

tolerance to orbitofrontal circuit’s damage.
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1 Introduction

People and animals arguably act, in some circumstances, against their own inter-
est. Why does irrational behavior persist, despite its potential costs to survival and
fitness? Standard decision theory posits that rational decisions rely on estimating
and comparing the expected value of each available alternative option in the choice
set. Thus, irrational behavior may emerge from the covert mechanisms through
which the brain constructs, maintains or compares option values. Decades of work
in human and non-human primates show that these computational processes involve
a specific subset of brain systems, including — but not limited to — orbitofrontal
(OFC), anterior cingulate (ACC) and dorsolateral prefrontal (dIPFC) cortices [1,
2]. While the relative contribution of these subsystems is not well understood, a
robust finding across studies is that orbitofrontal neurons encode value, regardless
of the type of option, and whether subjects are engaged in explicit decision-making
or in the subjective evaluation of single options [3-6]. Accordingly, neuropsycholog-
ical studies of brain-damaged patients demonstrate that lesions to the orbitofrontal
cortex induce irrational value-based decisions without impairing other types of high-
level cognitive processes [7]. This means that the effective rationality of decisions
hinges on the integrity of OFC circuits. But even in the absence of clear anatomical
lesion, value processing in the OFC is known to exhibit systematic distortions, which
can lead to irrational context-dependent behavioral biases. For example, value cod-
ing in the OFC is modulated by its pre-stimulus baseline activity [8, 9], adapts to
the recent range of option values [10], and depends on whether a given option is
the status-quo alternative [11] or is currently attended [12]. Taken together, these
results suggest that OFC circuits are organized in such a way that they process
value-related information in a moderately, yet consistently, suboptimal manner. In
turn, this raises the basic question of why haven’t OFC circuits evolved to minimize
suboptimal distortions?

Our working assumption is that evolutionary pressure eventually selected for
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OFC computations that are “rational enough”, given the constraints that may
act at the neurobiological level. In other words, what looks like irrational com-
putations might actually be deemed optimal, once considering the neurobiological
constraints under which brain circuits operate. A prominent example is the ener-
getic budget of neural circuits, which encompasses both synaptic maintenance and
activity-dependent firing costs [13]. These constraints are demonstrably tight: the
mitochondrial metabolic supply of neurons is actively restricted at the expense of
circuit-level computational efficiency [14], and a scarcity of external resources (e.g.,
food) eventually results in impaired neural processing [15]. This supports the idea
that the brain has evolved so-called “efficient” neural coding strategies that trade
off computational precision for energetic costs [16]. Interestingly, variants of such
mechanisms explain value range adaptation effects in the OFC and the irrational
behavioral patterns that ensue [17]. But theoretical work also emphasizes other
types of tradeoffs that arise from demands on the robustness or fault-tolerance of
neural circuits. A widely debated notion is that neural circuits must maintain their
excitatory-inhibitory balance to ensure stability and /or homeostasis [18]. Disruption
of the E/I balance has even been proposed as a core pathophysiological mechanism
in several neuropsychiatric conditions [19]. Another possibility, which is pervasive
in biological systems, is the need to minimize vulnerability to localized damage [20,
21]. Although direct empirical evidence for such a constraint on neural circuits is
comparatively sparser, recent work indicates that neural circuits that subtend, e.g.
motor behavior and working memory, achieve resilience to neural loss through archi-
tectural redundancy [22-24]. This is important because redundant neural networks
are notoriously energy-inefficient [25-27]. In other words, OFC circuits may have
evolved under competing architectural constraints. But then: how do we identify
which neurobiological constraints might have steered OFC computations away from
rationality?

We start with the premise that any constraint of the sort discussed above will
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ultimately shape the architecture of OFC networks in ways that distort value com-
putations and compromise decision rationality. This is, in fact, trivially observed
in artificial neural network models of the OFC trained to perform candidate value
computations while complying with these constraints (see Supplementary Material).
Critically however, the form of irrational behavior that emerges depends on both the
nature of the constraint and the specific value computations the OFC is assumed
to perform. This is because a given type of value computation requires a tailored
neural network architecture, whose native compliance with the above constraints is
largely arbitrary. We thus reasoned as follows. If we knew what the OFC would
look like if it had evolved in the absence of constraints, then we could compare
its -counterfactual- architecture to that of actual OFC networks. We argue that
artificial neural networks are valuable tools here, as their connectivity structure de-
termines both the computations they perform and the activity patterns they exhibit
in response to inputs or cues. Thus, a legitimate artificial neural network model of
the OFC should exhibit activity patterns that increasingly resemble those of OFC
neurons as it learns to perform the value computations that are characteristic of the
OFC.

In this work, we consider the paradigmatic case of binary decisions under risk —
that is, where the choice set consists of two alternatives, each defined by the proba-
bility and magnitude of prospective rewards. Numerous empirical recordings of OFC
neurons are available during tasks in which macaque monkeys make such decisions.
Here, we reanalyze an existing dataset in which decision cues — i.e. option-specific
reward magnitude or probability — are revealed one at a time, while randomizing
their sequence order across trials. This design provides a unique empirical esti-
mate of the dynamics of information content in the OFC as value computations
unfold over within-decision time [1]. In line with previous literature, we distinguish
between two broad types of value computations: value synthesis and value com-

parison. The former implies that the OFC progressively integrates decision cues to
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compute the value of both options, which can be concurrently read out on possibly
orthogonal subspaces of OFC neural ensembles [5, 28-30]. The latter reduces to
directly updating the value difference between the two options as a new decision
cue becomes available [1, 31, 32]. Both value synthesis and value comparison can
be implemented using one of five distinct neural encoding formats, which vary ac-
cording to how the identity of the attended option is represented (e.g., left/right
versus default/alternative), and how option values are framed (e.g., left /right, de-
fault /alternative, or attended/non-attended) [11, 33]. Together, this yields a total
of ten candidate scenarios regarding OFC value computations.

We first train recursive neural networks or RNNs to perform each candidate value
computation in a rational manner, given arbitrary decision cue sequences. We note
that this is not a trivial task, as it requires the network to maintain a memory trace
of previously attended cues, while remaining invariant to the order in which cues
are presented. It turns out that RNNs can reliably learn to solve this class of prob-
lems from virtually any random initialization of their connectivity. At this point,
we identify which, among these ten candidate types of value computations, yield
legitimate RNN models of the OFC. To do so, we compare the full set of recorded
OFC neural responses with the activity patterns of simulated RNNs exposed to the
same decision trials as those experienced by the monkeys, at various stages of RNN
training. As we will see, this eventually selects two specific types of value compu-
tations, which effectively are counterfactual models of OFC networks that would
have evolved without any neurobiological constraint. We then distort the internal
connectivity of these networks to reproduce monkeys’ irrational choices in the task
(about 20% of all choices). As we will show, these distorted RNNs make behavioral
and neural predictions that generalize across monkeys. Finally, we compare ratio-
nal and irrational RNN models of the OFC, in terms of their energetic budget, the
sparsity of their connectivity structure, their E/I balance, and their robustness to

neural loss. This enables us to identify which neurobiological constraint may have
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2 Results

2.1 Identification of legitimate RNN models of OFC circuits

We took advantage of an open dataset of single unit activity recordings from
the OFC, the dIPFC and the ACC of two macaque monkeys (n = 189, 135 and
183 neurons respectively) engaged in value-based decision-making (22,618 trials in
total) [1, 34]. At each trial, monkeys chose between two options presented on the left
and right sides of a screen, each defined by the probability and prospective amount
of a rewarding juice (see Methods, Fig. 1a). Each decision cue (representing either
the probability or the magnitude of the — currently attended — option) appeared
sequentially and then disappeared. The monkeys could commit to a decision at any
point after the second cue without necessarily sampling the remaining cues and were
free to decide which cue to sample if they decided to continue the trial.

As we will see, monkeys make decisions that integrate both currently attended
and remembered cues. In line with recent empirical work, we hypothesized that
the OFC may implement one of two candidate decision-relevant computations: (1)
computing the value of both options independently [29, 35| (“value synthesis”) or
(2) computing the difference between option values [5, 36] (“value comparison”).
Both value synthesis and comparison can be implemented using recurrent artificial
neural networks (RNNs), which operate under the same conditions as monkeys in
the task. In particular, RNNs access cues sequentially and in an encoding format
that specifies attribute type and rank, as well as option identity (see below). At
each cue onset, these inputs are sent to a first hidden layer (cue-encoding), whose
units feed their output forward to a second hidden layer (cue-integration), from
which the RNN’s outputs are linearly decoded (see Fig. 1b and Methods). The

integration layer relies on internal recurrent connections to combine currently and
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previously attended cues, and progressively update its ongoing computations [28].
Thus, value synthesis and comparison require distinct recurrent connectivity struc-
tures. Now, both value synthesis and comparison require specifying how options are
identified, which is debated in the existing literature. The OFC may do so based
on, e.g., spatial location [37] (left vs. right), temporal order [28] (first vs. second),
or attentional focus [33] (attended vs. unattended). In principle, both OFC inputs
(decision cues) and outputs (option values) may encode option identity in a differ-
ent format, irrespective of whether the OFC operates value synthesis or comparison.
We thus systematically tested all possible combinations, which resulted in ten co-
horts of RNNs (two types of value computations combined with five input-output
format variations; see Methods). Importantly, each cohort gathers a thousand RNN
instances that sample the manifold of admissible connectivity structures, following
random weight initializations and training datasets. Note that we did not endow
RNNs with the capacity to decide which cue to attend to or when to commit to a
decision; rather, we trained them to operate value synthesis or comparison indepen-
dently of such processes, which are treated as arbitrary.

To begin with, we aimed to identify legitimate counterfactual, idealized RNN
models of the OFC. To this end, we adopt a normative approach that obviates the
need for empirical data in training RNNs. Cohorts of candidate RNNs were initial-
ized with randomly distributed weights and subsequently trained to compute the
expected value of options, as defined by rational decision theory — that is, the prod-
uct of reward magnitude and probability. When tested on actual monkey decisions
at the time of choice, these rational models predicted 79% of choices (monkey F:
78%, monkey M: 80%). In fact, the subjective value profiles estimated from monkey
choices (see Methods) closely resemble that of expected value (see Fig. 3a and Fig.
S1). Thus, rational RNNs provide a reasonable first approximation to monkeys’
behavior.

Crucially, although all rational RNNs yield identical decisions in the task, their
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Figure 1: Designing RNNs to solve a decision task. a, Task design. Adapted
from Hunt et al., (2018) [1]. Monkeys chose between the left and right option based on
sequentially sampled informative cues representing either reward probability or magnitude.
The locations of the first two cues were fixed, while subsequent cues could be freely chosen.
First, a blue light indicated the location of the next available cue, which was revealed once
the monkey fixated on the blue area and disappeared afterwards. The monkey could
choose an option using a joystick at any point after the second cue. b, RNN architecture
(see Methods). At each cue onset, the RNN inputs encode the currently attended cue,
while the outputs are the RNN’s current estimate of option values or value difference.
Applying a softmax mapping to the RNN outputs yields choice probability, where options
are identified with regard to spatial location, attentional focus or default status.

internal representations are different. For example, it is almost impossible to de-
code option values framed in a given option identity format from response patterns of
RNNs that were trained under different option identity formats (see Fig. 2c). Also,
individual option values are less reliably decoded from the activity of value compar-
ison RNNs than from value synthesis RNNs (paired t-test between value synthesis
and value comparison models: p < 107 for all input-output format variations).
We thus asked whether any of these RNN cohorts also capture key aspects of OFC
neural informational geometry, despite not having been exposed to neural record-
ings during training. To test this, we replicated the two types of analysis conducted
by Hunt et al. (2018) on single units’ recordings, which we also performed on the

RNNs’ integration layer. We first ran a representational similarity analysis at first
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cue onset, building representational dissimilarity matrices (RDMs) by correlating
population activity vectors in response to all (2 X 2 x 5 = 20) possible cues (see
Methods, Fig. S2 and Fig. S9). In brief, RDMs identify which cue features elicit
discriminable response patterns across neurons when only a single cue is available.
However, generalizing this approach to later stages of the trial becomes challenging,
as RDMs face a combinatorial explosion when multiple cues have been sampled. To
track neural representation geometry at all stages of decision trials, we also quanti-
fied whether and how inter-neuron differences in their sensitivity to current and past
cues are preserved across cue onset times (cf. cross-correlation matrices or CCMs —
see Methods). One can think of RDMs and CCMs as two distinct summary statis-
tics of the informational geometry of distributed neural systems. We then derived
the two ensuing neural distance metrics by comparing OFC neurons and RNN units
at each stage of the training process (see Methods). Note that even untrained — i.e.
random — RNNs exhibit some degree of neural similarity with the OFC, because they
respond to value-relevant input cues. Untrained RNNs thus effectively provide the
distribution of neural distances under the null. Now, when being trained to perform
a specific value computation, RNNs modify their informational geometry and hence
their neural distance to the OFC. We considered that legitimate RNN models of the
OFC are those RNN cohorts that significantly decrease both neural distance metrics
as a result of training (despite being blind to OFC activity patterns). It turns out
that only two variants out of ten cohorts satisfy this selection criterion (see Fig. 2b,
Fig. 3b); we only consider these for the remainder of the paper (extended results for
all model variants are shown in Fig. S7 to Fig. S15 of the Supplementary Material).

In brief, both selected RNN models receive input cues that encode option identity
using the temporal format, while computing option values in the attentional format.
They differ only in terms of the type of value computation: one RNN cohort per-
forms value synthesis (neural CCM distance, paired t-test: p < 107'°) neural RDM

distance, paired t-test: p < 1071), whereas the other performs value comparison
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(CCM: p < 107°, RDM: p < 107%5). Although we cannot yet arbitrate between
these two scenarios, we have clearly narrowed the set of plausible counterfactual
idealized OFC models.
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Figure 2: Selection of candidate counterfactual idealized RNIN models of the
OFC. a, Average value profiles of rational models and subjective value profiles of each
monkey (fitted on choices). b, Neural distance trajectories between OFC and RNN cohorts
during rational training. Dots show the average distance of RNN cohorts (across the
1000 RNN instances), computed using either RDMs (x-axis) or CCMs (y-axis). Black
dots indicate the initial (random) state of RNN cohorts, colored dots denote their final
rational state. Only two RNN cohorts significantly improve in both neural distance metrics
after rational training (grey area). ¢, Information encoding in rational RNN models.
Each column corresponds to a RNN cohort; each row corresponds to a type of decoded
information. Numbers and grey nuances indicate the percentage of variance explained by
a linear decoder applied to the RNNs’ integration layer activity, averaged across the 1000
instances of the corresponding RNN cohort. All combinations are significantly better
decoded than chance (paired t-test against the R2 decoded by untrained models: all
p < 1071%).

Decoder R2

At this point, we asked whether and how counterfactual idealized OFC models

need to be modified to explain irrational behavior. We thus retrained the selected
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rational RNNs to predict (a subset of) monkeys’ choices, of which about 20% are ir-
rational. To preserve the interpretability of their value computations while allowing
perturbations during progressive cue integration, RNNs were initialized with their
trained rational weights, and retraining was restricted to recurrent connections in
the integration layer. At the time of choice, retrained irrational RNNs achieved
84% choice prediction accuracy on average (monkey F: 83% (SE 1 x 107*), monkey
M: 85% (SE 1 x 107*)) on a test dataset, significantly outperforming rational mod-
els (paired t-test: both p < 10715; see Fig. 3a). Moreover, models trained on one
monkey significantly outperformed their rational counterparts on the other monkey
(paired t-test: both p < 1071%; see Fig. 3a). This suggests that irrational RNNs
captured hidden deterministic mechanisms underlying irrational behavior that gen-
eralize across trials and individuals.

We have leveraged the flexibility of RNNs to model both rational decision-making
and systematic irrational choices, each relying on a similar structure of intercon-
nected units. Next, we sought to determine whether irrational RNNs qualify as
realistic models of OFC computations (despite not having been exposed to neural
recordings during training). Remarkably, when retraining RNNs to fit the (partly)
irrational behavior of monkeys, their neural distance to the OFC decreases even fur-
ther compared to their rational counterparts (neural CCM distance, paired t-test;
value synthesis model: p = 9 x 1073, value comparison model: p < 107%). Fur-
thermore, this improvement generalizes across monkeys, as shown when evaluating
the neural distance of irrational RNNs to the other monkey (neural CCM distance,
paired t-test: both p < 10715; see Fig. 3c). However, one may argue that informing
RNN models about monkeys’ actual choices may have facilitated the resemblance to
any brain system that contributes to behavioral control in the task, thus challenging
the anatomical specificity of our results. To address this point, we also computed
the neural distance of irrational RNNs to dIPFC and ACC neurons. We first checked

that empirical summary statistics of neural information geometry vary more across
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Figure 3: Behavioral and neural realism of candidate RNNN models of the OFC. a, Balanced
accuracy for predicting monkey choices. Each color corresponds to one of the two candidate models (blue:
value synthesis, orange: value comparison). Lighter distributions correspond to rational models, darker
distributions to irrational models, and distributions with a dashed outline represent irrational models trained
on one monkey and tested on the other. Within each violin plot, the horizontal line denotes the mean,
and the thicker vertical line represents the interquartile range (25" — 75'"" percentile). Asterisks indicate
significant differences, with p-value < 0.025. b, Construction scheme of a CCM, applied to either OFC
electrophysiological recordings or RNN activity patterns. Top left: for each OFC neuron (resp. RNN unit),
mean firing rate response (resp. activity) at each cue onset is concurrently regressed across trials against
the rank of all previously attended cues. Top right: correlation, across neurons (resp. units), between the
ensuing regression coeflicients for different cues — and possibly obtained at different onset times. Bottom:
CCM: each cell in the matrix shows the correlation across neurons (resp. units) for a given pair of regression
coefficients. The upper half of the matrix shows the results computed on “option trials” (where the two first
cues characterize the same option), while the lower half corresponds to “attribute trials” (where the two
first cues characterize the same attribute, but different options). Asterisks indicate significant correlations,
with p-value < 0.001 (correction for multiple comparisons across CCM cells). ¢, Neural CCM distance
between models and the OFC, same format as panel a. The white distribution corresponds to random
RNN initializations (identical for both RNN cohorts). Asterisks indicate significant differences, with p-
value < 0.0167.d, Neural CCM distance between irrational models and the OFC, the dIPFC and the ACC.
Asterisks indicate significant differences, with p-value < 0.0167. e, Comparison of predicted (RNNs) and
measured (OFC) CCM cells. Each color corresponds to one of the two candidate models (blue: value
synthesis, orange: value comparison). Each pair of dots corresponds to a single CCM cell, for each monkey
separately. Left: rational RNNs, Right: retrained (irrational) RNNs. f, Distribution of the slopes of CMM
cell pairs in irrational RNNs (see panel e). Asterisks indicate significantly positive distribution, with p-value
< 0.05.
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brain regions than across monkeys (p < 107'%; see Fig. S4). When comparing neu-
ral distances across brain regions, we found that irrational RNNs were significantly
closer to the OFC than to the dIPFC and the ACC (neural CCM distance, paired
t-test: p < 1071 for all comparisons between areas; see Fig. 3d).

One may also ask whether selected RNNs exhibit stereotypical trial-by-trial ac-
tivity variations that are commonly observed in the OFC. First, we focused on
the mixed selectivity of OFC neurons and attempted to classify units according to
three distinct response profiles (see Methods): “option value cells”, which encode
the value of a single option (either attended or unattended); “chosen option cells”,
which encode the binary identity of the chosen option; and “chosen value cells”,
which encode the value of the chosen option (see Fig. 4a). In line with the existing
literature [32, 38|, we found that the trial-by-trial firing rate variations of recorded
OFC neurons can be matched to one of the three response profile types at the time
of choice (see Fig. 4a). Importantly, this is also the case for integration units of
selected RNNs, albeit with a slight over-representation of offer value units. We
also analyzed trial-by-trial variations in the grand mean activity — i.e. the average
response across OFC neurons or across RNN integration units —, with the aim of
verifying common fMRI findings in human OFC. In particular, we asked whether
grand mean activity correlates, across trials, with either the value difference between
the chosen and unchosen options (based on the monkey’s choice on each trial; see
Methods) or choice confidence (defined as the probability, at the time of choice, that
processing the remaining unattended cues would not alter the value comparison).
Consistent with previous fMRI work [3, 39], we found that the grand mean firing
rate of OFC neurons significantly correlates with chosen/unchosen value difference
for both monkeys (monkey F: p = 0.048, monkey M: p < 1071%; see Fig. 4b) and
confidence for monkey M (monkey F: p = 0.1, monkey M: p < 1077; see Fig. 4c).
Interestingly, this correlation was also significantly positive, on average, in both

cohorts of models, both for chosen/unchosen value difference (one-sample t-test, ra-
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Figure 4: Comparison of trial-by-trial activity variations between RNNs and
OFC neurons. a, Proportion of units classified as offer value, chosen value, or chosen
option cells, in RNNs models and in recorded OFC neurons (at the time of choice). b,
Correlation between the RNNs’ grand mean activity and chosen/unchosen value difference.
Asterisks indicate a significantly positive correlation, with p-value < 0.05. c, Correlation
between the RNNs’ grand mean activity and decision confidence. Asterisks indicate a
significantly positive distribution, with p-value < 0.05.

Together, these findings suggest that the selected RNNs perform value computa-
tions that are — behaviorally and neurally — realistic. We next seek to characterize

the systematic distortions in cue processing that lead to irrational choice behavior.

2.2 Analysis of computational interferences in irrational

RNNs

First, we quantified potential interference effects across decision cues. Recall
that, by assumption, rational choices should be solely driven by the informational

content of decision cues and thus remain invariant w.r.t. cue presentation order.
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In contrast, irrational interference effects would manifest as variability in RNNs’
value outputs across random permutations of cue presentation order, all else being
equal. We thus performed Monte-Carlo simulations of selected RNNs, quantifying
the standard deviation of value outputs across randomized cue presentation orders,
for all possible cue combinations and at each cue onset time (see Methods). By con-
struction, rational RNN models exhibit almost no variability. However, irrational
RNNs exhibit significantly stronger interference effects than their rational counter-
parts (paired t-test at each time step: both p < 107!). Importantly, interference
effects increase as within-trial decision time unfolds (paired t-test within each co-
hort between step 2 and step 4: both p < 107!5; see Fig. 5a and Fig. 5b). This
suggests that systematic perturbations in sequential cue processing may accumulate
over time. Accordingly, monkeys’ choices become more irrational — i.e. less con-
sistent with their average preferences — as decision time unfolds (two-sample t-test
across sessions at step 2 vs. step 4, monkey F: p < 1071%; monkey M: p = 0.4; at
step 3 vs. step 4, monkey F: p =6 x 1073; monkey M: p < 1071 see Fig. 5¢). One
may argue that this interference effect may only be apparent, because choices that
are triggered later in time may correspond to difficult decisions. Indeed, the average
absolute difference between subjective option values — a proxy for decision ease —
also tends to decrease when decision time increases (two-sample t-test across trials
at step 2 vs. step 4, monkey F: p < 107'%; monkey M: p < 107!4; see Fig. 5d).
To control for the effect of decision difficulty, we regressed irrational choice rates
onto the absolute value difference, across trials. Reassuringly, the residuals of this
regression still increase as decision time unfolds (two-sample t-test across trials, step
2 vs. step 4, monkey F: p < 107% monkey M: p = 0.03; see Fig. S5). This means
that monkeys’ rationality deteriorates beyond what can be expected from decision
difficulty. A possibility is that cue traces within the RNNs’ integration layer may
leak into one another, either across options or across attributes. To investigate this,

we separated “option trials” — where the second cue reveals the missing attribute of
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the same option as the first cue — from “attribute trials” — where the second cue re-
veals the same attribute as the first cue, but for the other option. At the second cue
onset, interference effects are significantly stronger in option trials than in attribute
trials, for both RNN types (paired t-test within each cohort: both p < 1071%). This
is also the case for one monkey, based on residual irrational choice rates (two-sample
t-test across trials, monkey F: p = 0.02; monkey M: p = 0.1; see Fig. S5). This
suggests that cue leakage effects are more pronounced within options — i.e. across
attributes — than across options. Thus, we expect the integration of previously and
currently attended cues to be asymmetrical, above and beyond differences induced
by the type of information that they convey —i.e. reward probability vs. magnitude.
To test this, we quantified the effective value output of selected RNNs as a function
of the rank of both previously and currently attended cues, irrespective of cue types
(see Methods). As expected, rational RNNs output values that exhibit no significant
asymmetry on average (see Fig. 5e). In contrast, irrational RNNs output values that
are mostly influenced by the previously attended cue (see Fig. 5f and Fig. 5f). When
quantified in terms of the relative gradient of value w.r.t. the rank of previously and
currently attended cues (see Methods), we find that the asymmetry is significantly
stronger in irrational RNNs than in rational RNNs (paired t-test within each cohort:
both p < 1071%; see Fig. 5i and Fig. 5j). This asymmetry is also significantly present
in monkeys’ choices (one-sample t-test across sessions: both p < 10714; see Fig. 5h).
These results suggest that previously attended cues leave a persisting value trace
that partly resists novel value-relevant information.

In summary, irrational OFC circuits differ from their rational counterfactual
variants in that they exhibit slight but systematic interference effects during value
computations, which are due to peculiarities in their internal connectivity structure.
We now ask whether these peculiarities may bring some form of biological advantage

that may have overcompensated the behavioral irrationality that they induce.
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Figure 5: Interference mechanisms in irrational models and monkeys. a, Stan-
dard deviation of the irrational value synthesis RNNs’ outputs in response to random
permutations of cue sequence orders (y-axis), as a function of cue onset times (x-axis)
during option trials only (light) or attribute trials only (dark). Asterisks between time
steps indicate p-value < 0.05, asteris within time steps indicate p-value < 0.0167. b,
Same format as panel a, but for irrational value comparison RNNs. ¢, Rate of monkeys’
irrational choices (y-axis), as a function of cue onset time, for both attribute an option
trials. Asterisks indicate that the difference between time steps (averaged over trial types)
are significant within each monkey, with p-value < 0.0167. d, Absolute subjective value
difference, same format as panel c. e, Average value output of rational RNNs (greyscale
nuances), as a function of the rank of both previously (x-axis) and currently (y-axis) cues
(see Methods). f, g, Same format as panel e, but for irrational value synthesis and value
comparison RNNs, respectively. h, Same format as panel e, but for both monkeys. i,
Average difference in the gradient of the RNNs’ value output w.r.t. cue rank (attended
cue minus unattended cue, see Methods), for both rational and irrational variants of value
synthesis RNNs. The asterisk denotes a significant difference between rational and irra-
tional RNNs, with p-value < 0.05. j, Same format as panel i, for value comparison RNNs.
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2.3 Comparing the biological advantages of rational and ir-

rational RNNs

First, we compared rational and irrational RNNs in terms of the metabolic cost
of sustaining their respective structures. Since action potentials and synaptic main-
tenance are major sources of energetic consumption in the brain [40], we quantified
two proxies for metabolic cost: average network activity and sparsity of their re-
current connections (see Methods). However, we found no systematic significant
difference in either measure of metabolic cost between rational and irrational RNNs
(paired t-test, average network activity, value synthesis: p = 0.04; value comparison:
p = 0.3; connection sparsity, value synthesis: irrational less sparse than rational with
p < 107'1; value comparison: irrational more sparse than rational with p < 107'?;
see Fig. 6a and Fig. 6b).

Second, we took inspiration from other variants of efficient coding models, which
rather suggests that brain circuits self-organize to maximize either information trans-
fer rate or code sparsity. We quantify these in terms of the average log-transformed
absolute gradient of units’ activation function [17, 41] and the average rate of units’
co-activation across all possible units pairs [42, 43|, respectively (see Methods). We
found no significant difference in code sparsity (paired t-test, both p > 0.4; see
Fig. 6¢). Interestingly however, we found that irrational RNNs exhibit significantly
lower information transfer rate than their rational counterparts (paired t-test, both
p < 1071%; see Fig. 6d). This suggests that rational value computations may already
be maximally efficient — at least w.r.t. information transfer rate. Retrospectively,
this may be considered an inherent virtue of rational information processing, which
precludes interference-induced information loss.

Third, we reasoned that irrational circuits may benefit from a better excitatory-
inhibitory balance, which would ensure stability and/or homeostasis [18]. However,
we found no significant difference in the relative proportion of negative and posi-

tive connection weights between rational and irrational RNNs (paired t-test, value
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sparsity, measured as the average co-activation probability over all units pairs.

6: Potential biological benefits of irrational circuits. For all panels, asterisks indicate a
significant difference between rational and irrational RNNs, with p-value < 0.0083 (22). Blue distributions
correspond to value synthesis models, while orange distributions correspond to value comparison models.
a, Metabolic cost, measured as the average network activity, over all trials, trial steps, and units. b, Code

¢, Information transfer

rate, measured as the average log-transformed absolute gradient of units activation function. d, Connection
sparsity, measured using Gini index. e, excitatory-inhibitory balance, measured as the relative proportion
of negative and positive connection weights. f, Tolerance to neural loss, measured as the average rational
choice rate from 10% to 50% of lesioned units.
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Finally, we reasoned that the internal connectivity structure of irrational circuits
may enable some form of functional redundancy, which would render them more
tolerant to neural loss. To test this, we simulated random virtual lesions of RNN
integration units and measured the retained rate of rational choices. As expected,
rational choice rate monotonically decreases when the fraction of lesioned units
increases, for all types of models. Thus, we quantify neural loss tolerance to neural
loss in terms of the rational choice rate averaged over lesion sizes (from 10% tp 50% of
integration units, see Methods). We find that irrational RNNs exhibit significantly
stronger tolerance to neural loss than their rational counterparts, irrespective of

value computations (paired t-test, both p < 1071%; see Fig. 6f).
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3 Discussion

In this work, we asked whether irrational behavior may not be explained by distal
constraints that act on the neurobiology of brain decision-making systems. First, we
adopted a normative approach to identify idealized RNN models of the OFC, which
proxy the counterfactual, unconstrained evolution of OFC circuits. We found that
only a specific subset of candidate RNNs reproduces the informational geometry
of the OFC — specifically, those that receive inputs encoding option identity in a
temporal format (first vs. second option), while computing option values in an
attentional format (attended vs. unattended option). Second, we retrained the
selected RNNs to account for monkeys’ irrational choices when making decisions
under risk. Importantly, these retrained irrational RNNs eventually make out-of-
sample behavioral and neural predictions that generalize across individuals. We also
show that their peculiar internal connectivity induce deterministic interferences in
value computations that explain the irrational variability of monkeys’ choices across
within-trial attentional trajectories. Finally, we compare the potential biological
benefits of rational and irrational variants of OFC circuits and show that the latter
exhibits much greater tolerance to neural loss. Irrational interferences in value
computation may thus be understood as an incidental byproduct of selective pressure
favoring the robustness of OFC circuits to anatomical damage.

That irrational behavior is the incidental outcome of neurobiological constraints
is not a novel idea. In particular, most existing theoretical and empirical work
highlight the metabolic cost of information processing in the brain [13]. To our
knowledge, this work is the first attempt to demonstrate the importance of resilience
to circuit damage in this context. We contend that this demonstration is theoretical
in essence, at least when compared to empirical work that employ causal — e.g.,
genetic — manipulations to disclose proximal neurobiological constraints [14, 15].
Arguably however, it would have been difficult to provide direct empirical evidence

for our main claim, at least in primates. This is inherent to the distal nature of the
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constraint, which is more readily addressed from a computational perspective. In
turn, our conclusions rely on a set of modeling assumptions: we will now discuss
these.

To begin with, we restricted the set of candidate OFC computations to variants
of value synthesis and value comparison. Although a few recent empirical studies
consider other types of OFC computations [44], this prior selection is representative
of current debates regarding OFC’s contributions to decision making [45]. Tmpor-
tantly, we show that some of these variants reproduce complex features of the OFC’s
informational geometry, even without being informed with behavioral and/or neu-
ral data (i.e., from first principles). This includes established results regarding the
mixed selectivity of OFC neural populations (cf. “option value cells”, “chosen value
cells” and “choice cells”) [5, 38]. Moreover, we show that these computational sce-
narios are anatomically specific, in that their neural predictions do not resemble
electrophysiological recordings in either dIPFC or ACC. Retrospectively, this as-
sumption may thus not be so restrictive. Note that the particular RNN variants
that we validated using OFC single unit recordings are consistent with landmark
fMRI studies of value-based decision making. In particular, our results directly con-
firm fMRI studies promoting the attentional format of value coding [33]. But this
is not the only possibility. For example, if a default option can be identified prior
to decision onset (e.g., in terms of a prior preference over superordinate categories),
then pre-stimulus activity in the OFC seems to encode its subjective value, and
the strength of this response predicts peoples’ irrational attachment to their default
preference [11]. In other words, the OFC may use a value coding format that rather
distinguishes default versus alternative options. Interestingly, this also aligns with
our neural and behavioral results, under the assumption that early preferences —
e.g., based upon the first attended cue — set a default option. The reason is twofold.
First, as long as attention remains focused on the first option, attentional and de-

fault /alternative value-coding formats are formally indistinguishable. Second, the
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persisting value trace of the firstly attended cue will, on average, appear as a bias
towards the default option. In summary, although the statistical resemblance to the
default/alternative hypothesis may be stronger in trials where decisions are triggered
prematurely — i.e., before all relevant cues have been processed — we argue that our
findings remain compatible with existing representational frameworks of value cod-
ing in the OFC. Beyond value-coding format issues, one may find it disappointing
that we could not disambiguate computational scenarios of value comparison or value
synthesis. The underlying question here is whether the OFC directly implements
choice, or whether its role is limited to assigning values to available options [28, 46].
When implemented in the form of winner-take-all networks, the former scenario
explains reproduced findings in electrophysiological and neuroimaging studies, in
particular: the observed mixed selectivity of OFC cells [5, 32|, as well as the appar-
ent encoding of the value difference between chosen and unchosen options — at least
during late phases of decision making [47]. Interestingly, we have shown that such
findings can be equally well reproduced by RNNs performing either value synthesis
or value comparison. This calls for experiments that are designed to distinguish
these kinds of computational scenarios, as opposed to testing one of them.

Also, we did not vary the global architecture of our artificial neural nets, which
consisted of a layer of feature-encoding units sending their outputs to a layer of
recurrently connected integration units. In line with recent neural net approaches
to value computations in the OFC [17, 28], we adopted the minimal architecture
that ensures universal approximation capabilities while using a limited number of
sigmoidal units [48, 49]. Note that a major computational bottleneck of both value
synthesis and value comparison scenarios is OFC circuits’ capacity for combining
value-relevant attributes of arbitrary number and type [35]. Now, the above two-
layer architecture provides a flexible and simple solution to this problem that rests
on the second layer’s trained ability to integrate arbitrary sequences of attributes,

whose type and rank are encoded in separate pools of the first layer units. In
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particular, this circumvents the need for otherwise unrealistic, context-dependent
changes in connectivity with upstream brain systems involved in recognizing or
storing value-relevant information. Nevertheless, the relative simplicity of our de-
sign contrasts with previous studies that favored off-the-shelf deep neural nets to
approximate the hierarchical organization of, e.g., primates’ visual ventral stream
[50] or humans’ language networks [51]. From a machine learning perspective, tasks
such as visual perception and speech comprehension are inherently difficult prob-
lems, which remained unsolved until the advent of deep neural networks trained
on massive labeled datasets. In these domains, objective task performance reliably
predicts statistical similarity with neural data. This relationship, however, does not
generalize to our findings: RNNs tend to more closely resemble OFC data when
they permit systematic, error-inducing interferences. In retrospect, it is remarkable
that our value synthesis/comparison RNNs exhibit such realistic features, at both
the behavioral and neural levels. This is despite the degeneracy of RNN wiring
profiles w.r.t. each type of value computation, which we systematically explored by
repeating the training process across many random initializations of RNN param-
eters. Arguably, the ensuing marginalization process renders our results robust to
local minima issues. This statistical benefit would have been prohibitively costly to
match using deep neural net architectures.

One might also argue that rational and irrational RNNs may have been com-
pared in an unfair manner. For example, we chose to train rational RNNs under a
normative approach, which precludes idiosyncratic variations in risk attitudes. The
rationale here was to obtain neural nets that could serve as neutral and fully inter-
pretable reference points, in that their computational objective was under our control
— i.e. computing expected values, as prescribed by decision theory. We acknowl-
edge that, when it comes to measuring statistical similarity to neural recordings,
irrational RNNs may somehow benefit from being trained on individual behavioral

datasets. However, the fact that irrational RNNs make out-of-sample predictions
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that generalize across individuals rather suggests that they have captured hidden,
yet shared, decision mechanisms. In any case, there is no reason to think that this
training difference would, in principle, favor irrational RNNs in terms of resilience
to circuit damage. A related concern is whether the latter may be the artefactual
byproduct of re-training, which may — in principle — provide an additional opportu-
nity for improving efficiency or robustness. This is the reason why we also explored
another training strategy for irrational RNNs, which starts from the same randomly
initialized parameter sets as rational RNNs. As evidenced in the Results section
(see also Fig. S7, Fig. S8 and Fig. S15), our conclusions remain unchanged under
this alternative training strategy.

In conclusion, we believe our modeling assumptions are tenable, at least when
compared to state-of-the-art computational studies in the field. They enabled us to
reverse the usual approach to disclosing distal neurobiological constraints on ratio-
nality, which typically rests on highlighting conflicts with the demands of behavioral
performance (cf. Fig. S6). In contrast, we identify realistic mechanisms that ex-
plain observed deviations to rationality, and explore their potential neurobiological
advantages. We believe that this may be a fruitful method for investigating related

evolutionary or developmental issues in cognitive neuroscience.

4 Methods

4.1 Task design

Monkeys were seated in a behavioral chair with their heads restrained. Each
trial began when the monkey fixated on a central fixation cue for 500 ms. At the
start of the trial, two options were presented, each consisting of two hidden cues
initially masked by grey squares. One of these squares then turned blue, indicating
the first cue available for sampling. When the subject fixated on the blue square,

the corresponding picture cue was revealed and had to be continuously fixated for
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300 ms before it was re-masked.

All picture cues had been previously learned and were associated with either
probability or magnitude information. Probability cues indicated reward probabil-
ities of 10%, 30%, 50%, 70%, or 90%, while magnitude cues represented reward
magnitudes of 0.15, 0.35, 0.55, 0.75, or 0.95 arbitrary units (AU).

Following the initial cue, a second blue square highlighted the next available cue,
which had to be sampled using the same procedure. This second cue was either the
other cue of the same option (option trial) or the cue of the other option associated
with the same attribute (attribute trial). After the second cue, the two remaining
cues were simultaneously highlighted with blue squares, allowing the subject to freely
choose which one to sample next, or to select one of the two options using a joystick.
If a third cue was sampled, the subject could then either sample the final cue or
make a choice. Once the fourth cue was revealed, the subject was required to make

a choice.

4.2 Neural data

The designing of the task, behavioral and neural datacollection were entirely
performed by Hunt et al. 2018 [1], and published in an open dataset [34].

Neuronal activity was recorded from three brain regions in each monkey: the
orbitofrontal cortex (OFC), the anterior cingulate cortex (ACC) and the dorsolat-
eral prefrontal cortex (dIPFC). During each session, neurons were simultaneously
recorded from two or all three regions using between 8 and 24 electrodes. Neurons
with a firing rate below 1 Hz were excluded. In total, for monkey F, 108 neurons
were retained in the OFC, 97 in the ACC, and 107 in the dIPFC. For monkey M,
87 neuron were retained in the OFC, 49 in the dIPFC, and 101 in the ACC. These
recordings were collected across 24 session for monkey F and 29 sessions for monkey
M. Within each subject and brain area, neurons were pooled into pseudopopulations

on which all subsequent analyses were performed.
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To enable direct comparison with RNN models, which operate in discrete time,
we averaged each neuron’s firing rate over a 100-400 ms window following cue onset.
This provided a single activity measure per neuron per trial time step, consistent

with the temporal granularity of activity in the RNNs.

4.3 Value profile estimation

We estimated the subjective value profile of each monkey (and each model) using
standard statistical procedures, based solely on the agent’s choices. More precisely,
we fitted the underlying value function, under the assumption that choices followed

a simple softmax mapping of the difference in option values:

1
1+ exp (= (V(p1,m1) — V(p2, m2)))

p(choose option 1) =

(1)

where p; and m; denote the reward probability and magnitude of option 7, as known
by the agent at the time of choice, and V' (p,m) is the corresponding subjective
value. Equation (1) provides a binomial likelihood function for observed choices,
given the unknown monkeys’ value function. Parameterizing the value function
then enables us to regress trial-by-trial choices against option attributes. To allow
for maximal modelling flexibility, we employed a semi-parametric approach, whereby
each possible combination of probability and magnitude — including cases in which
one or both attributes were unknown at the time of choice — is captured using a
specific model parameter. In other words, the only modelling constraint here is
that the same value function applies to all options, but its functional form remains

unconstrained.

4.4 RNN architecture

Let t € {1,2, 3,4} denote the time step index at which cue is revealed or attended

within a decision trial. The RNN component variables are defined as follows:
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. ?(t) € R3: Inputs vector at time t. These include the attribute rank and type
— probability or magnitude —, as well as the identity of the currently attended

option (see below).
- o e . . :
o Ly(t) € R?: Unit activation vector in the first hidden layer at time ¢.
% 10 . . . . . .
o Ly(t) € R': Unit activation vector in the second hidden layer at time ¢.

« Y (t) € R! (for value comparison models) or 7/ (t) € R? (for value synthesis

models): Output prediction at time t.

At the first time step (¢ = 1), information propagates through the network

according to the following equations:

fi(t) = f (Wencode : ?(t) - b_1>) (2)
[—/2>(t) - f (Wforward : z@) - ?2) (3)
7(t) = Wreadou ' IT;(t) (4)

At later time steps (¢ > 1), the second hidden layer incorporates recurrent ac-
tivity elicited by the previous cues. This means that Equation (4) is replaced with:

— — — —
L2(t) = f (Wforward : Ll (t) + Wrecurrent : L2(t - 1) - b2> (5)

Here, WWg refers to matrices of connection weights, and b_.) are bias vectors applied
to the corresponding hidden layers. The weights W, code and biases b—l> where initially
set such that each admissible cue rank (z;) preferentially activated a dedicated unit
in a rank-specific pool of first layer units. Similarly, each admissible cue type (z3)
and option identity (x3) preferentially activated one out of two units each (again in
secluded pools of first layer units). To ensure distributed encoding within each pool,

the activation profiles of first layer units were configured to tile the domain of their
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02 specific input uniformly: whenever one unit’s activity reached 75% of its maximum,

03 the “adjacent” units in the pool were 25% active.

604 To impose a biologically plausible constraint on firing rates, we used a sigmoid

s activation function f for all units in the hidden layers:

f:x

1
_—
1+ exp(—z)

(6)

606 Importantly, when structurally organized into two hidden layers, neural nets with

sor a limited number of sigmoidal units possess universal approximation capabilities [48,

608 49] .

609 The RNN received inputs one at a time, in a sequential manner — as monkeys did

6

—

o in the task. The sequence order is determined by the exogenous control of attention,

s which samples cues in an arbitrary fashion within a decision trial. Let x;(t), x2(t)

ez and x3(t) denote the components of the input vector 7 (t) € R:

613 o 11(t) encodes the normalized rank of the attended cue, with the following
614 mapping:

Magnitude cue | Probability cue | Cue rank | x;

0.15 AU 10% 1 0.1

0.35 AU 30% 2 0.3
" 0.55 AU 50% 3 0.5

0.75 AU 70% 4 0.7

0.95 AU 90% 5 0.9

616 o 15(t) encodes the attribute type. Probability: xs = 0; magnitude: z = 1.

617 o x3(t) encodes the identity of the attended option. Option 1: 23 = 0; option 2:

618 r3 = 1.

619 Note that the identity of the attended option can be expressed in two different

20 representation formats: spatial (left vs. right) or temporal (first vs. second). This

21 distinction affects the encoding of x3, as illustrated in the following example trials:
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a1 cisely, when the input’s option identity is encoded using the spatial format, then

Trial 1D Attended | 23 in the spatial frame | x3 in the temporal frame
option side | (right = 0, left = 1) (first = 0, second = 1)
1 Right 0 0
1 Left 1 1
1 Left 1 1
1 Right 0 0
2 Left 1 0
2 Left 1 0
2 Left 0 1
2 Left 0 1

Similarly, the outputs of the network can be expressed in different representation
formats: spatial, temporal, or attentional (attended vs. unattended). The example
trials below illustrate how the encoding format of option values varies across these
frames. Let Viegs and Vjigne denote the values of the left and right options as estimated

by the network at each cue onset. The statistical similarity between representation

formats depend on the actual sequence order of cue attendance:

Trial 1D Attended | Output in the | Output in the Output in the
option side | spatial frame | temporal frame | attentional frame
1 Right Viight & Vet Viight & Vieft Viight & Vet
1 Left Viight & Viege Viight & Vet Viett & Viight
1 Left Viight & Viege Viight & Vet Viett & Viight
1 Right Viight & Vet Viight & Vieft Viight & Vet
2 Left Viight & Viege Viett & Viight Viett & Viight
2 Left Viight & Vietr | Viert & Viggni Viett & Viigh
2 Right Viight & Viege Viett & Viignt Viight & Viege
2 Right Viight & Vet Viett & Viight Viight & Vet

Note that not all combinations of input/output formats are trainable. More pre-
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value outputs can be encoded in all representation formats (3 possibilities). How-
ever, when the input’s option identity is encoded using the temporal format, then
the spatial information is lost, which leaves only 2 possible value encoding formats
(temporal and attention frames). This means that there is only 5 combinations of

input/output representation formats in total.

4.5 RNN training

4.5.1 Rational training

Models were implemented and trained using MATLAB R2022b with the VBA
toolbox [52]. The RNN parameters subject to training (Wirward, Wrecurrent and
b—2>) were initialized as samples from an i.i.d. Gaussian distribution with mean 0
and variance 0.5. For each RNN model, the training procedure was repeated with a
different initial random sample, until 1000 trained models reached 95% test accuracy.
In the main text, we refer to the ensemble of trained RNNs as a “cohort”, each of
which corresponds to a given type of value computation (value synthesis versus
value comparison) and a given combination of input/output representation format
(see above).

For each model instance in a given RNN cohort, a training set and a testing set
consisting of 500 trials each were generated. Every trial consisted of a sequence of
four cues, randomly chosen among the set of different option pairings, and presented
in a random order. Note that training and testing trials could be classified post-hoc
as either “attribute trials” or “option trials”, depending on whether the attention
switched to the second option at the second cue onset, or not.

Now, so-called “value synthesis” models were trained to output the expected
value of both options in response to each cue presentation. In contrast, “value
comparison” models were trained to output the difference in expected value between

the two options. When both the probability and magnitude of an option were
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available, its expected value was computed as their product. If any attribute was
missing, its rank was replaced by its prior mean under the task distribution.
Training was terminated when the absolute change in variational free energy
between VBA successive iterations fell below 10. A network was considered success-
fully trained if it reached at least 95% of explained variance on its testing set. Each
RNN cohort consisted of 1000 independently trained model instances, each with a
unique training set, testing set, and parameter initialization. Importantly, random
seeds were shared across cohorts, which allowed for fully matched comparisons across

cohorts.

4.5.2 Irrational training

To preserve the interpretability of value computation and input/output repre-
sentation formats, all network parameters were frozen except for Wiecurrent- 1he

network outputs were transformed into choice probabilities via a simple softmax

1

mapping: p(choose option 1) = Trep(CAT)

In contrast to the rational training phase, where value outputs were evaluated
at each cue onset, irrational training evaluated the value outputs only at the time of
choice. Since Wreewrent controls the way RNNs assimilate cue sequences to perform
their specific value computations, this effectively restricts the admissible sources of
irrational behavior to within-trial interferences between cues.

Each RNN instance within each cohort was then re-trained to fit the choices of
each individual monkey, using a training dataset of 2000 trials randomly selected
from monkeys’ recorded sessions. This procedure produces two twin versions of
each retrained irrational model — one for each monkey. We then test their respective
behavioral and neural predictions within and across monkeys. The former evaluates
their inter-trial generalization ability, whereas the latter focuses on inter-individual
generalization ability.

In a supplementary analysis, we also trained networks to predict monkey choices
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directly from their initial parameterization, without a prior rational training phase.
This procedure was thus similar to rational training in terms of training load (cf.
optimization of all parameters in VBA and no partial freezing of parameters), except

that value outputs were only evaluated at the time of choice.

4.5.3 Rational training with constraints

In another supplementary analysis, we trained RNNs to perform rational value
computations while simultaneously satisfying neurobiological constraints. More pre-
cisely, RNN parameters were trained to optimize a tradeoftf between the accuracy of
their value outputs and the compliance to one of the following constraints: minimal
average firing rate, maximal connection sparsity (considering both feedforward and
recurrent weights), maximal coding efficiency, or maximal resilience to neural loss
(see Biological benefits below). To balance these two — possibly conflicting — objec-
tives, we introduced trade-off weights that varied logarithmically from 1073 to 103,
allowing us to modulate the relative importance of “behavioral efficiency” (accuracy
of value outputs) versus “neural efficiency” (compliance to the neural constraint).

The results of this training procedure can be eyeballed in Fig. S6.

4.6 Analysis of informational geometry within neural pop-

ulations: summary statistics

4.6.1 Representational similarity analysis

Let [72(1) denote the vector of activations in the RNN’s second layer in response
to input 7 at the first cue onset. This vector can be computed for each possible input
:?;Z, which yields 20 distinct activation patterns (i.e., 5 cue ranks X2 cue types X2
options). The representational dissimilarity matrix (RDM) is constructed element

by element by computing pairwise similarities between these activation vectors [53]:
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RDMy = (L7 (). L5 (1)) ™

where r denotes Pearson’s correlation. If RDMj; strongly positive, then activity
patterns are mostly invariant to differences between inputs T a,d El), i.e. the neural
representation of these inputs are similar. In brief, RDMs enables us to identify
what input features need to change to elicit distinct neural responses.

The same procedure is applied to recordings of OFC neurons (as well as to neural
recordings within the dIPFC and the ACC), using vectors of averaged firing rates
measured between 100 ms and 400 ms following the first cue onset. This yields two
RDMs: one for the model (RDM™°%!) and one for the OFC data (RDM°FC). Full
RDM summary statistics for all monkeys and brain regions can be eyeballed in Fig.
52, and average RDMs obtained for all RNN cohorts are plotted in Fig. S9.

Finally, the similarity between these matrices is quantified using a rank-based

distance metric:

diStRDM =1 — p (RDMOFC RDMmodel) (8)

upper’ upper

Here, p denotes Spearman’s correlation and RD M, pper refers to the upper tri-
angular half of the matrix, excluding the diagonal. We used a rank-based metric
because experimental neural data is typically much noisier than model activations,
resulting in compressed correlation ranges that are more appropriately captured by
rank correlations. The neural RDM distance trajectories between all models and
brain areas can be eyeballed in Fig. S7, and the details of the comparison with OFC

recordings are displayed in Fig. S13.

4.6.2 Cross-correlation matrices

Unfortunately, the above representational similarity analysis does not scale well

with the number of input combinations. In our context, its statistical cost is pro-
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hibitive for later phases of decision trials, when more than one cue has been attended.
For example, at the second cue onset, there are 400 possible cue combinations, which
would induce RDMs with almost 79800 entries. This is why we resort to another type
of summary statistics, which was proposed by Hunt et al. (2018) [1]. In brief, this
analysis enables us to quantify and compare the multiple traces that cue sequences
leave on units’ activity, at the cost of partly neglecting differences induced by at-
tribute types. This simplifying assumption exploits the observed quasi-symmetrical
impact of reward probability and magnitude on monkeys’ subjective value profiles
(see Fig. 2a).

Let L™ (i,t) denote the activation of unit ¢ in the second hidden layer after
the presentation of a cue at time ¢ € {1,2,3}, given a sequence of inputs s(z) of
length ¢. We regress each second layer unit’s trial-by-trial activity variations at cue
onset t concurrently onto trial-by-trial variations of normalized attribute rank in
all cues, while identifying cues by their appearance order in the sequence. Note
that we also include two additional regressors, which encode how consistent the
2"d and 3" cues (respectively) are w.r.t. the currently preferred option, as well as
an intercept term. This approach aims at detecting nontrivial memory traces of
previously attended cues, while ruling out mere confirmation effects in value coding
neurons. Importantly, we separate “option trials” (where the first two cues belong to
the same option) from “attribute trials” (where the first two cues describe the same
attribute — i.e. probability or magnitude — but for both options) prior to performing
the regression analyses. This yields one set of regression coefficient estimates per
trial type.

Let E:(t) € R™»it= denote the vector of t-statistics associated with regression
coefficient estimates for the k™ attended cue (k € {1,2,3}), given each second layer
unit’s activity at time ¢. This vector measures how sensitive to the k' attended
cue second layer units are (at time ¢) in normalized signal-to-noise ratio units. This

enables a direct quantitative comparison across units, cue presentation orders and
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decision times. Note that Ez(t) vectors that involve cue presentation orders that
are strictly higher than activity sampling times (i.e. when k > t) are statistically
meaningless.
We then define the cross-correlation matrix (CCM) as follows:
—
)

COMyura = p (Br(t). Bu(t) (9)

where p denotes Pearson’s correlation. A strongly positive CCM cell indicates that
the neurons most sensitive to the k' attended cue at time ¢ arealso those most
sensitive to the &'*® cue at time t'.

We obtain full CCMs by systematically varying cue presentation orders (k and
k') as well as activity sampling times (¢ and t'), yileding a 9 by 9 symmetrical matrix.
We then remove CCM cells that are meaningless to avoid statistical illusions possibly
induced by imperfections in trial randomizations. We repeat this process for both
trial types (cf. “option trials "versus “attribute trials”), yielding two CCM types.
Differences between the two types of CCM cells that involve the first and second cue
onset times (i.e. CCM,mm) signal that a shift in the attended option affects the
network’s distributed computations. In particular, if neurons respond to the value
difference between options, then one expects CCM; 29 to be positive for option
trials, and negative for attribute trials [1].

We apply the same analysis on recorded data from OFC neurons (as well as
neurons in the dIPFC and ACC). For each neuron, we compute the average firing
rate in a 100-400 ms window after each cue onset and regress it against normalized
attribute ranks of all cues (including the same additional regressors). This provides
summary statistics whose temporal resolution matches that of RNN models. Full
CCM summary statistics for all monkeys and brain regions can be eyeballed in Fig.
S3, average CCMs obtained for all RNN cohorts are plotted in Fig. S9 and the
distribution of key CCM cells are shown in Fig. S10.

To compare the informational geometry of RNNs and OFC neural populations,
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we simply compute the Euclidian distance between the meaningful CCM cells:

vec(CCMOFC ) vec(C'C Mmodel)

option option

diStCCM = — ( 10)

OFC model
VeC(CCMattribute) VeC<CCMattribute) 9

The neural CCM distance trajectories between all models and brain areas can
be eyeballed in Fig. S7 and Fig. S8, and the details of the comparison with OFC

recordings are displayed in Fig. S13.

4.6.3 Mixed selectivity: offer value cells, chosen value cells and choice

cells

To identify offer value, chosen value, and choice cells, we replicated the analysis
previously introduced by Padoa-Schioppa and colleagues [38]. When applied to
neural recordings in the OFC, we relied on subjective value profiles, as estimated
from monkeys’ choices in the task (see Value profile estimation). To maximize the
match between analyses, we also use model-specific value profiles for RNNs.

For each unit, we performed four separate regressions across all trials, using
four distinct regressors: the value of option 1, the value of option 2, the value of
the chosen option, and the identity of the chosen option. Note that we match the
option identity encoding format to the one used by each RNN model. Each unit was
assigned to the category that yielded the highest percentage of explained variance,
provided the regression was significant (p-value < 0.05). Otherwise, no category

was assigned. The distribution of cell categories for all models can be eyeballed in

Fig. S14.

36



804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

4.7 Analysis of computational interferences in irrational

RNNs

4.7.1 Dependency on cue sequence order

In principle, rational behavior in the task only depends upon the content of
value-relevant information, but not on its presentation sequence order. Under this
view, any observed dependency on cue sequence order violates rationality.

Let y*@(t) denote the value difference between options, as can be readout from
the RNN’s response to an input sequence s(x) of length ¢ — where the sequence s(x)
is composed of a series of cues presented in a specific order. For value synthesis
models, we compute y*®(¢) by subtracting the readouts of both option values (at
time t). To quantify the dependency on cue presentation order, we first measure
the standard deviation of y*®)(¢) across all possible permutations of cue orderings
while keeping the set of ¢ attended cues constant, and then average the results over
cue sets. We repeat this process separately for option trials and attribute trials,
meaning that we only consider cue order permutations that are admissible for each
trial type.

Let X be the set of all possible combinations of ¢ cues, and for each such set
r € X, let S(x) denote the set of admissible orderings of those cues (restricted to

the relevant trial type). Then, the model’s dependency on sequence order at time t,

denoted d(t), is defined as:

1
d(t) = 57 2 v/ Var ({y" @ (0)]s € S(2)}) (1)
| | zeX
Note that this measure is defined for all decision times starting from the second
cue onset (t > 2) — and both trial types. This enables us to track the possible

accumulation of interferences in RNN computations as decision time unfolds.

Models” dependency on sequence order is represented in Fig. S12 (top row) for
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all cohorts.

Note that this analysis cannot be directly applied to monkeys’ choices, as we
cannot have access to the monkeys’ internal value estimates for each cue sequence
order. This is because the total number of unique cue sequence orders is very large:
specifically, 10000 per trial type (corresponding to 5 cue ranks for each of the 4 cues
and 4! = 24 possible cue orderings, restricted to valid ones). This number is compa-
rable to the total number of decision trials for each monkey (Monkey F: 9463 trials;
Monkey M: 13155 trials), which means that we have no empirical repetitions of cue
sequence orders. This is the reason why we resort to measures of apparent deviations
to rational choice, which effectively reduce to detecting trials that are incongruent

with estimates of monkeys’ subjective preferences (see Fig. 5¢ and Fig. 5d).

4.7.2 Persisting value traces

The above dependency on sequence order may be partly driven by a directional
bias, whereby the effective weight of each cue is determined by its onset time. For
example, previously attended cues may weigh more on value outputs than currently
attended cues, all else being equal. We developed a specific method for detecting
such persisting value traces, which can be equally applied to both RNN simulations
and monkeys’ behavior in the task.

We start by re-estimating value profiles, while allowing for value differences be-
tween options that are currently or previously attended (at the time of choice), and
having separated trials by the type of attended cue (reward probability vs magni-
tude). Let V;f;?b denote the pseudo-value function of the attended option when a
probability cue is attended at the time of choice, and V™% that of the other (unat-
tended) option. Let p. and mye be the ranks of the attended option’s probability
and magnitude, and pupatt and Mmynage those of the unattended option. The choice

probability for selecting the attended option is given by:
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1

1 + eXp (_ (‘/a?cf;()b (patt; matt) - Vulﬁ;)tk‘)c (punattu munatt)))
(12)

p(choose attended option) =

This provides a binomial likelihood function for observed choices that are trig-
gered when a probability cue is attended. To estimate the pseudo-value profiles
VPP and VP we use the same semi-parametric approach as before. The pseudo-
value profiles V,;;*® and Vo5 can be estimated similarly, given observed choices that
are triggered when a magnitude cue is attended.

Recall that VE® (resp. V) is the pseudo-value that ensues from currently
attending a probability (resp., a magnitude) cue, while the magnitude (resp., prob-
ability) cue was previously attended (if ever). To quantify the relative impact of
currently and previously attended cues while marginalizing over cue types, we then
combine V2" and V™ to form the following average pseudo-value profile Vy:

Vi = 5 (VB + Ve ") (13)

DN | —

Importantly, Vatt is a 6 by 6 pseudo-value profile whose first dimension
(columns) spans the rank of the currently attended cue, while its second dimension
(rows) spans the rank of the previously attended cue — including the case where it is
unknown at the time of choice. A rational agent would exhibit a strictly symmetric
average pseudo-value profile.

To quantify potential asymmetries in Vi, we computed gradients of Vi with
respect to the currently and previously attended (or, equivalently, unattended) di-
mensions. Let Vi (:,4) denote the 3™ row (i.e., fixed attended attribute, varying
unattended attribute) and V,(i,:) denote the i*" column (i.e., fixed unattended

attribute, varying attended attribute). Average pseudo-value gradients are given

by:
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(14)

These gradients capture the average rate of change in the average pseudo-value
profile w.r.t. changes in the attended or unattended attribute ranks. For example,
a stronger gradient along the unattended dimension signals a greater sensitivity to
the previously attended cue. This is the hallmark of a persisting value trace that
resists novel (currently attended) information. Results can be eyeballed for all RNN

moels in Fig. S12.

4.8 Biological benefits

4.8.1 Efficient coding: average network firing rate

The average network firing rate f of a model is defined as the average activation

of RNNs’ second layer units, across all units, time steps, and possible trials:

_ 1
f=w—vov X ZZLz (15)
Ng X Ny x N; S(@)eB(X) =1 i=1
where S(X) denotes the set of all admissible sequences of 4 cues, Ng = 10000 is the
number of such sequences, N; = 4 is the number of cues per trial, and N; = 10 is

the number of units in the RNNs’ second hidden layer.

This is a proxy for the network’s metabolic or energetic consumption.

4.8.2 Efficient coding: code sparsity

We quantify the sparsity of activations in the second hidden layer based on the
statistical overlap of unit activations across trials. Specifically, we define code spar-
sity as a decreasing function of the likelihood of multiple units being simultaneously
active, relative to their typical activity distributions.

Let us say that unit 4 is “active” if its response Ly (i) strictly exceeds the a'®
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percentile of its marginal activity distribution, where a € [0,100] is an arbitrary
activation threshold (expressed in the normalized units of cumulative distributions).
Let Nactive(@, s(x),t) denote the number of active units at decision time ¢, for the
input sequence s(x), under the threshold a. The probability that two randomly

selected units are simultaneously active is computed as:

Nactive(a> S(.CE), t) (Nactive(aa S(-T)a t) - 1)

P t) = 1
Finally, the code sparsity S is defined as:
100
S=1- P( 17
101><Ns><Ntaz:0”ZXZ a,s(@ (17)

When S tends towards unity, code sparsity is maximal, i.e. units almost never

co-activate across trials and decision time steps.

4.8.3 Efficient coding: information transfer rate

For a given network unit, information transfer rate is maximal when the noise-
induced information loss is minimal, i.e. when the entropy of the unit’s output
(across sampled cue sequences) is maximal. Let f : x +— y be the input-output acti-
vation function of neural net units. At the low noise limit, information transfer rate
IR is defined as the expected, log-transformed, absolute gradient of the activation

function [41]:

of

IR = Elln 5 (@)

| (18)

Here, each RNN’s second layer unit ¢ receives a linear combination of activations
from the first hidden layer and recurrent activations from itself at previous time

steps, which are passed through a sigmoid activation function (with bias):

(19)
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The derivative of the sigmoid simplifies to:

) = 1) (- £(@) (20)

Therefore, the network’s average information transfer rate reduces to:

I S S _ s
AIR = S S(xg ;;m (L5996, 6) x (1= L59G,1)) (1)

where LS(‘T) (1,t) denotes the activation of unit ¢ at step t in response to the input

sequence $().

4.8.4 Connection sparsity

We quantify the sparsity of RNNs’ recurrent connections using the Gini index
[54], computed over the absolute values of the entries (w;)icq1,..ny in the recurrent
weight matrix Wieewrent- LThe weights are first sorted in ascending order of their
absolute magnitude, such that |w;| < |wy| < ---|w,|. The Gini index reflects the

degree of unequal sharing of connection strengths across all pairs of connected units:
G=1- Z |w| ( 1) (22)

n Z |wz| 2
A Gini index close to 1 indicates high sparsity, which proxies a low synaptic main-

tenance cost. Note that fault-tolerance is typically achieved using high functional

redundancy (i.e. low sparsity), though this is not a necessary condition.

4.8.5 E/I balance

The excitatory/inhibitory balance of a circuit refers to the relative contribu-
tion of excitatory and inhibitory inputs on features of the circuit’s evoked responses

(e.g., selective tuning). In electrophysiological studies, E/I balance is usually eval-
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uated using intracellular conductance estimates across a wide range of conditions
and contexts. Here, we quantify a structural E/I balance, which we define as the
ratio between the number of positive and strictly negative connection weights. This
measure includes all hidden-layer connections, encompassing both the feedforward

weights Wigrwara and the recurrent weights Wiecurrent- Formally:

# {w 2 O‘w € Wforward U Wrecurrent}
# {w < O|w € Wforward U Wrecurrent}

E/I balance = (23)

Note that RNNs that exhibit mostly excitatory connections (£/I balance > 1)
may exhibit divergent activity dynamics, which precludes accurate value computa-

tions (at least in late phases of decision trials).

4.8.6 Resilience to neural loss

Let n € {0,1, ..., N;} denote the number of lesioned units in the second hidden
layer, and let C,, € {1, ..., N;}" be a combination of such n units. Lesioning a unit
was done by externally setting its activation to 0 across all time steps and trials.
Let zmoder(s(x),t,C) € {0,1} denote the RNN’s simulated choice in response to
an input sequence s(x) at time ¢, under a lesion C,, of its integration layer. Let
Zrational ($(), 1) denote the rational choice (i.e. the preferred option based upon
options’ expected value) for the same input sequence and time step. We define the
resilience to neural loss Ri.tiona as the retained rational choice rate, averaged over
all possible lesion configurations involving 10% to 50% of all units in the second

hidden layer:

1 5 1 Ny
Rr ional — 1 z, s(x n )=zrational(s(x
ational 5 % NS X Nt 712221 (10) CRGZC(R) S(I)g(x) ; { model( ( ),t,C ) t l( ( )7t)}

n

(24)
where C(n) denotes the set of possible combinations of n units within an ensemble

of 10 units. When R,.ijona tends towards unity, the behavioral outputs of RNNs are
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51 unaffected by virtual lesions.

1

052 We also computed an alternative metric, Reonsistent, Py comparing the lesioned

s model’s behavior to the choice of its own non-lesioned counterpart (which may

o]

9

o

+ deviate from rational expected values):

1 5 1 N
Reonsistent = Z Z Z Z ]-{zmodel(s(z),t,C’n):zmodel(s(ac),t,C’o)}
5 X Ng X Ni 5 (17?) Cn€eC(n) s(z)eS(X) t=1
(25)
055 Resilience to circuits’ damage can also be evaluated using virtual lesions of con-

s nections within the network. In this analysis, a proportion n € {10, 20, 30, 40,50}
o7 % of the RNN’s connection weights are set to 0,and resilience to neural loss
oss 1S measured as the retained rational choice rate. Note that we did this sepa-
0 rately for recurrent connections only (Wiecurrent) and for all hidden-layer connections

9060 (Wiorward U Wiecurrent)- All results can be eyeballed on Fig. S15.
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